首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2013年   2篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 63 毫秒
1
1.
In the present work, we proposed to create special sorbents for the study of protein–protein interactions, based on the fixation of cysteine-inserted beta-casein mutants with thiol-Sepharose resin. As a model system, we used bovine beta-casein, which belongs to the family of intrinsically unstructured proteins. Insertion of distal cysteines into the unfolded protein was not found to significantly change beta-casein properties. An amphiphilic beta-casein molecule has one hydrophilic domain and one hydrophobic domain placed on the N- and C-terminus, thus enabling one to exploit its capacity to engage in different types of intermolecular interactions. Two different casein-Sepharose sorbents incorporating either C-4 or C-208 beta-casein mutants bound to thiol-Sepharose were produced, exposing the hydrophobic domain in the case of the C-4 and the hydrophilic domain in the case of the C-208 mutant, respectively. The results obtained using the proposed sorbents with native beta-casein, another partially unfolded protein prion, and an oligomeric globular glyceraldehyde-3-phosphate dehydrogenase were found to be consistent with the data obtained by ELISA on free protein–protein complexes. Thus, Sepharose modified with various proteins is suitable for isolation of proteins interacting with the chromatographic phase bound partners from multicomponent systems such as milk. The obtained results allow the proposing of a fast and convenient method to be used for isolation of proteins, determination of protein-interacting partners, and the study of multi-protein complexes.  相似文献   
2.

In the present work, we proposed to create special sorbents for the study of protein–protein interactions, based on the fixation of cysteine-inserted beta-casein mutants with thiol-Sepharose resin. As a model system, we used bovine beta-casein, which belongs to the family of intrinsically unstructured proteins. Insertion of distal cysteines into the unfolded protein was not found to significantly change beta-casein properties. An amphiphilic beta-casein molecule has one hydrophilic domain and one hydrophobic domain placed on the N- and C-terminus, thus enabling one to exploit its capacity to engage in different types of intermolecular interactions. Two different casein-Sepharose sorbents incorporating either C-4 or C-208 beta-casein mutants bound to thiol-Sepharose were produced, exposing the hydrophobic domain in the case of the C-4 and the hydrophilic domain in the case of the C-208 mutant, respectively. The results obtained using the proposed sorbents with native beta-casein, another partially unfolded protein prion, and an oligomeric globular glyceraldehyde-3-phosphate dehydrogenase were found to be consistent with the data obtained by ELISA on free protein–protein complexes. Thus, Sepharose modified with various proteins is suitable for isolation of proteins interacting with the chromatographic phase bound partners from multicomponent systems such as milk. The obtained results allow the proposing of a fast and convenient method to be used for isolation of proteins, determination of protein-interacting partners, and the study of multi-protein complexes.

  相似文献   
3.
Well-defined set of sheep PrP polymorphisms at positions 136, 154 and 171 define susceptibility to scrapie, ranging from very high susceptibility observed for V136-R154-Q171 (VRQ) variant to resistance for A136-R154-R171 (ARR).To gain insight into the mechanisms of scrapie susceptibility/resistance, the unfolding pathways of the sheep prion protein variants were analysed by differential scanning calorimetry over a wide range of pH. Thermal unfolding occurs, in the 5.0 to 6.0 pH range, through a reversible one-step process while at pH<4.5 and >6.0 unfolding intermediates are formed, which are stable in the 65–80°C range. The observed differences correlate with ovine susceptibility to scrapie.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号