首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Fruit of two apple (Malus domestica Borkh.) cultivars, differing in their ability to produce anthocyanin pigments when exposed to sunlight, have been studied using reflectance spectroscopy. Comparison of the spectra shows that apple anthocyanins in vivo possess a symmetric absorption band at 500-600 nm with a maximum near 550 nm. Anthocyanins considerably increase light absorption by apples. In on-tree-ripening Zhigulevskoe apples, accumulating high amounts of anthocyanin pigments, chlorophyll contents in sunlit and shaded sides of the fruits are found to be similar. In contrast, frequently considerably lower chlorophyll content is estimated in sunlit compared with shaded sides of Antonovka apples exhibiting low potential for anthocyanin formation. Sunlight also brings about an increase of carotenoid content over that of chlorophylls and accumulation of substances responsible for light absorption in the range 350-400 nm. The rates of high-light-induced chlorophyll bleaching in red zones of fruit containing anthocyanins are considerably lower than those in green zones and decrease with an increase in the pigment content. Anthocyanins show more stability to irradiation than chlorophylls. A protective function of anthocyanins against both light-induced stress in, and damage to, apples is suggested. It is proposed that anthocyanins function as an effective internal light trap filling the chlorophyll absorption gap in the green-orange part of the visible spectrum.  相似文献   
2.
Absorption and reflectance spectra of maple (Acer platanoides), cotoneaster (Cotoneaster alaunica), dogwood (Cornus alba) and pelargonium (Pelargonium zonale) leaves with a wide range of pigment content and composition were studied in visible and near-infrared spectra in order to reveal specific anthocyanin (Anth) spectral features in leaves. Comparing absorption spectra of Anth-containing and Anth-free leaves with the same chlorophyll (Chl) content, absorption spectra of Anth in leaves were derived. The main spectral feature of Anth absorption in vivo was a peak around 550 nm; the peak magnitude was closely related to Anth content. A quantitative nondestructive technique was developed to subtract Chl contribution to reflectance in this spectral region and retrieve Anth content from reflectance over a wide range of pigment content and composition. Anth reflectance index in the form ARI = (R550)-1 - (R700)-1, where (R550)-1 and (R700)-1 are inverse reflectances at 550 and 700 nm, respectively, allowed an accurate estimation of Anth accumulation, even in minute amounts, in intact senescing and stressed leaves.  相似文献   
3.
Assessing carotenoid content in plant leaves with reflectance spectroscopy   总被引:7,自引:0,他引:7  
Spectral reflectance of maple, chestnut and beech leaves in a wide range of pigment content and composition was investigated to devise a nondestructive technique for total carotenoid (Car) content estimation in higher plant leaves. Reciprocal reflectance in the range 510 to 550 nm was found to be closely related to the total pigment content in leaves. The sensitivity of reciprocal reflectance to Car content was maximal in a spectral range around 510 nm; however, chlorophylls (Chl) also affect reflectance in this spectral range. To remove the Chl effect on the reciprocal reflectance at 510 nm, a reciprocal reflectance at either 550 or 700 nm was used, which was linearly proportional to the Chl content. Indices for nondestructive estimation of Car content in leaves were devised and validated. Reflectances in three spectral bands, 510+/-5 nm, either 550+/-15 nm or 700+/-7.5 nm and the near infrared range above 750 nm are sufficient to estimate total Car content in plant leaves nondestructively with a root mean square error of less than 1.75 nmol/cm2.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号