首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
物理学   2篇
  2008年   1篇
  2001年   1篇
  1995年   2篇
  1990年   1篇
排序方式: 共有5条查询结果,搜索用时 87 毫秒
1
1.
Cells of the eukaryotic unicellular microorganism Dictyostelium discoideum are constitutively resistant to vital staining of their nuclei by the DNA-specific dye Hoechst 33342. By studying the mechanisms of this resistance, we evidenced that these cells expel vesicles containing the dye for detoxification (Tatischeff et al., Cell Mol Life Sci, 54: 476-87, 1998). The question to be addressed in the present work is the potential use of these extracellular vesicles as a biological drug delivery tool, using Hoechst 33342 as a model of a DNA-targeting drug. After cell growth with or without the dye, vesicles were prepared from the cell-free growth medium by differential centrifugation, giving rise to two types of vesicles. Negative staining electron microscopy showed their large heterogeneity in size. Using fluorescence techniques, data were obtained on the dye loading and its environment inside the vesicles. By UV video-microscopy, it was demonstrated that the dye-containing vesicles were able to deliver it into the nuclei of naive Dictyostelium cells, thus overcoming their constitutive resistance to the free dye. A vesicle-mediated dye-transfer into the nuclei of living human leukaemia multidrug resistant K562r cells was also observed.  相似文献   
2.
SUBCELLULAR DISTRIBUTION OF HYPERICIN IN HUMAN CANCER CELLS   总被引:2,自引:1,他引:2  
Confocal laser microspectrofluorometric measurements on human T47D mammary tumor cells have been performed to assess the intracellular distribution of hypericin within the various cell compartments: cytoplasmic membrane, cytoplasm and nucleus. Confocal fluorescence measurements obtained from microvolumes (? 1 μm3) located within the three sites of interest show that, while being primarily located in the cell membrane and cytoplasm after a short-term incubation in a 10?6M hypericin-containing culture medium, hypericin actually reaches the inside of the cell nucleus after a long-term incubation (210 min). Moreover, owing to the relative fluorescence quantum yields of hypericin determined in vitro when the molecule interacts with DNA, membrane and protein model systems, it is assumed that there is a significant accumulation of the drug into the cell nucleus. Consequently, the nucleus has to be considered as a possible target for the toxic action of hypericin.  相似文献   
3.
The resonance Raman spectra of water-soluble porphyrins, Cu(TMpy-P4) and Ni(TMpy-P4), and their mixtures with DNA, Poly(dG-dC).Poly(dG-dC), and Poly(dA-dT).Poly(dA-dT) were measured using 426 nm pulsed laser excitation (and 556 nm for some applications). At high laser power, the solution of Cu(TMpy-P4) mixed with DNA or Poly(dA-dT).Poly(dA-dT) exhibits new bands at 1550 and 1349 cm-1 that are not observed for Cu(TMpy-P4) alone or for Cu(TMpy-P4) mixed with Poly(dG-dC).Poly(dG-dC). These extra bands do not appear when the resonance Raman spectra are measured by a cw laser or by a pulsed laser with low power. Similar mixtures of M(TMpy-P4) (where M = Ni, Zn, Co, Mn, and H2) with these nucleic acids exhibit no such bands even by high power pulsed laser excitation. We attribute the new resonance Raman bands to an electronically excited Cu(TMpy-P4), stabilized by forming an exciplex with the A-T site of the nucleic acid. The minimum lifetime value of such an exciplex was estimated to be on the order of 10 ps.  相似文献   
4.
5.
Surface-enhanced Raman spectroscopy, resonance Raman spectroscopy and molecular modeling were employed to study the interaction of hypericin (Hyp) with human (HSA), rat (RSA) and bovine (BSA) serum albumins. The identification of the binding site of Hyp in serum albumins as well as the structural model for Hyp/HSA complex are presented. The interactions mainly reflect: (1) a change of the strength of H bonding at the N1-H site of Trp; (2) a change of the Trp side-chain conformation; (3) a change of the hydrophobicity of the Trp environment; and (4) a formation of an H-bond between the carbonyl group of Hyp and a proton donor in HSA and RSA which leads to a protonated-like carbonyl in Hyp. Our results indicate that Hyp is rigidly bound in IIA subdomain of HSA close to Trp214 (distance 5.12 A between the centers of masses). In the model presented the carbonyl group of Hyp is hydrogen bonded to Asn458. Two other candidates for hydrogen bonds have been identified between the bay-region hydroxyl group of Hyp and the carbonyl group of the Trp214 peptidic link and between the peri-region hydroxyl group of Hyp and the Asn458 carbonyl group. It is shown that the structures of the Hyp/HSA and Hyp/RSA complexes are similar to, and in some aspects different from, those found for the Hyp/BSA complex. The role of aminoacid sequence in the IIA subdomains of HSA, RSA and BSA is discussed to explain the observed differences.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号