首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
排序方式: 共有15条查询结果,搜索用时 528 毫秒
1.
Cumene hydroperoxide (CHP) and its derivatives have caused many serious explosions and fires in Taiwan as a consequence of thermal instability, chemical contamination, and even mechanical shock. It has been employed in polymerization for producing phenol and dicumyl peroxide (DCPO). Differential scanning calorimetry (DSC) was used to analyze the thermal hazard of CHP in the presence of sodium hydroxide (NaOH), sulfuric acid (H2SO4), and sodium bisulfite (Na2SO3). Thermokinetic parameters for decomposition, such as exothermic onset temperature (T 0 ), maximum temperature (T max ), and enthalpy (ΔH), were obtained from the thermal curves. Isothermal microcalorimetry (thermal activity monitor, TAM) was employed to investigate the thermal hazards during CHP storage and CHP mixed with NaOH, H2SO4, and Na2SO3 under isothermal conditions in a reactor or container. Tests by TAM indicated that from 70 to 90 °C an autocatalytic reaction was apparent in the thermal curves. According to the results from the TAM test, high performance liquid chromatography (HPLC) was, in turn, adopted to analyze the result of concentration versus time. By the Arrhenius equation, the activation energy (E a ) and rate constant (k) were calculated. Depending on the process conditions, NaOH was one of the incompatible chemicals or catalysts for CHP. When CHP is mixed with NaOH, the T 0 is induced earlier and the reactions become more complex than for pure CHP, and the E a is lower than for pure CHP.  相似文献   
2.
The nanosized LiNiPO4 was successfully synthesized by a solid-state reaction between the new Ni3(PO4)2·8H2O precursor and Li3PO4 at 700 °C in air atmosphere. The formation of LiNiPO4 was generated via three thermal decomposition steps. The samples were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, atomic absorption/atomic emission spectrophotometers, and thermogravimetric/differential thermal gravimetric/differential thermal analysis techniques. The activation energy (Eα) values of the three steps were calculated by Vyazovkin method and determined to be 90.39?±?5.79, 197.81?±?7.46, and 308.66?±?12.03 kJ mol?1, respectively. The average Eα values from this method are very close to Eα from KAS method. The most probable mechanism functions g(α) of three steps were evaluated by using the masterplots method and found to be the F1/3 (first step), F3/2 (second step), and D4 (final step), respectively. The pre-exponential factors (A) values of three steps were obtained based on the Eα and g(α). The kinetic triplet parameters of the formation of LiNiPO4 from the new precursor are reported in the first time.  相似文献   
3.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   

4.
The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.  相似文献   
5.
The DSC and TG data showed the dehydration process occurring over the range of 160?C300?°C. The XRD patterns of the synthesized KNiPO4·H2O and the calcined product at 350?°C with exposing in the air over 8?h are indexed as the KNiPO4·H2O structure, whereas at 600?°C is indexed as KNiPO4 structure. Hence, these data confirmed that the water molecule was eliminated from the structure at 300?°C, after that the spontaneously reversible hydration?Crehydration process was observed. The activation energy and pre-exponential factor were calculated by Kissinger, Ozawa, and KAS equations. According to the DSC curves, the enthalpy change (??H) of dehydration process can be calculated and was found to be 100.12?kJ?mol?1. Besides, we suggested another new method to determine the isokinetic temperature value using spectroscopic data. The surface area of synthesized hydrate and its calcined product at 350?°C with exposing in the air at over 8?h were found to be 21.48 and 134.3?m2?g?1, respectively. The reversible hydration?Crehydration process was observed, and the surface area of final product at 350?°C (aging time over 8?h) is higher than that of the synthesized compound. This behavior is important to develop alternative desiccant materials or other process based on the rehydration mechanism with increasing the surface area.  相似文献   
6.
7.
Kinetic triplet of the complex decomposition processes of Co3Ni3(PO4)2·8H2O was evaluated for the first time by using the deconvolution method to separate the overlapping DTG curves. After the completion of the deconvolution, five steps of the decomposition were obtained. The activation energy E and the pre-exponential factor A of each step were determined by KAS method. The kinetic compensation effect (KCE) method was applied to identify the individual step of the decomposition. Each master plot was simplified by generating the general equations and combined with the nonlinear regression curve fitting. According to kinetic analysis results obtained from this modified method, it was found that the early four steps of dehydration follow the mechanisms of nucleation and subsequent growth with different n-orders, while the last step occurs in the same mechanism but accompanied by the phase transition (lattice reorientation).  相似文献   
8.
9.
The dilithium zinc hydrogen phosphate monohydrate (Li2Zn(HPO4)2·H2O) was synthesized at the ambient temperature by using zinc acetyl acetonate monohydrate, phosphoric acid and lithium hydroxide monohydrate. The thermal stability of the Li2Zn(HPO4)2·H2O was studied by non-isothermal kinetic method (Ozawa and Kissinger) from the differential scanning calorimetric (DSC) data. The studied hydrate undergoes two endothermic thermal transformations, which the first transformation is due to the release of water molecule of crystallization and the second one is due to the release of water of constituent from HPO42? anions and transforms to P2O74?. The activation energies (Ea) calculated for the dehydration step and decomposition step of the Li2Zn(HPO4)2·H2O from different methods were found to be consistent. The dehydration and rehydration processes of the synthesized compound were investigated and found that the water of crystallization can be removed and rehydrated without the disrupting the structure of the material, provided it is not heated beyond 200 °C. The dehydration and rehydration processes of the synthesized Li2Zn(HPO4)2·H2O exhibits similar property to the zeolite.  相似文献   
10.
The ammonium manganese phosphate monohydrate (NH4MnPO4 · H2O) was found to decompose in three steps in the sequence of: deammination, dehydration and polycondensation. At the end of each step, the consecutive one started before the previous step was finished. The thermal final product was found to be Mn2P2O7 according to the characterization by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy. Vibrational frequencies of breaking bonds in three stages were estimated from the isokinetic parameters and found to agree with the observed FTIR spectra. The kinetics of thermal decomposition of this compound under non-isothermal conditions was studied by Kissinger method. The calculated activation energies Ea are 110.77, 180.77 and 201.95 kJ mol−1 for the deammination, dehydration and polycondensation steps, respectively. Thermodynamic parameters for this compound were calculated through the kinetic parameters for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号