首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学   18篇
力学   1篇
数学   6篇
物理学   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   4篇
  2000年   1篇
  1989年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Electronegativity χ and hardness η for 54 atoms and their positive and negative ions are calculated by means of self-interaction-corrected DFT including correlation terms. The exchange potential energy is treated by local spin density approximation corrected to account for self-interaction effects as suggested by Rae. The highest occupied orbital eigenvalues for ions are identified to the chemical potential μ± for positive and negative charged atoms depending upon the developing charge process. Values of χ±δ and η± for the different ionic species are given for several values of δ. Average values for 〈χ〉 and 〈η〉 in the sense of Mulliken finite formula for neutral atoms are also tabulated and compared with Mulliken values from experimental data. The agreement among them is almost quantitative.  相似文献   
2.
3.
4.
Soilbentonite slurry walls are designed to inhibit the subsurface movement of contaminants from hazardous waste sites. Although it is generally accepted that high concentrations of organic compounds will adversely affect soilbentonite slurry walls and clay liners, previous research investigating the effects of NAPLs on the conductivity of clay wall materials has been inconclusive. In this study the effects of various organics (benzene, aniline, trichloroethylene, ethylene dichloride, methylene chloride) on the effective conductivity of a typical soilbentonite slurry wall material were studied under two effective stress conditions, 200 and 52kPa. The hydraulic conductivity for the soilbentonite material permeated with water averaged 1.52×10-8cms-1. Compared to water, there was little change in conductivity when the sample was permeated with a solution containing a NAPL compound at its solubility limit, except for aniline. However, there was a one to two order of magnitude decrease in conductivity when the sample was permeated with a pure NAPL for all NAPLs tested. When the soilbentonite material was permeated with a water/NAPL/water/NAPL sequence, the conductivity decreased one to two orders of magnitude when a NAPL was introduced following water; however, when water was reintroduced after the NAPL, the conductivity increased to the initial hydraulic conductivity. The conductivity again decreased one to two orders of magnitude when the NAPL was reintroduced. This trend occurred for all NAPLs tested, and the fluid properties of the NAPL compounds alone did not account for the decrease in conductivity compared to water.  相似文献   
5.
Mesoporous silicon is a biocompatible, biodegradable material that is receiving increased attention for pharmaceutical applications due to its extensive specific surface. This feature enables to load a variety of drugs in mesoporous silicon devices by simple adsorption-based procedures. In this work, we have addressed the fabrication and characterization of two new mesoporous silicon devices prepared by electrochemistry and intended for protein delivery, namely: (i) mesoporous silicon microparticles and (ii) chitosan-coated mesoporous silicon microparticles. Both carriers were investigated for their capacity to load a therapeutic protein (insulin) and a model antigen (bovine serum albumin) by adsorption. Our results show that mesoporous silicon microparticles prepared by electrochemical methods present moderate affinity for insulin and high affinity for albumin. However, mesoporous silicon presents an extensive capacity to load both proteins, leading to systems were protein could represent the major mass fraction of the formulation. The possibility to form a chitosan coating on the microparticles surface was confirmed both qualitatively by atomic force microscopy and quantitatively by a colorimetric method. Mesoporous silicon microparticles with mean pore size of 35 nm released the loaded insulin quickly, but not instantaneously. This profile could be slowed to a certain extent by the chitosan coating modification. With their high protein loading, their capacity to provide a controlled release of insulin over a period of 60-90 min, and the potential mucoadhesive effect of the chitosan coating, these composite devices comprise several features that render them interesting candidates as transmucosal protein delivery systems.  相似文献   
6.
The aim of this work was to develop and characterize a new type of nanocapsules. To this end, a nanoemulsion bearing an oily core (Miglyol 812) was obtained by spontaneous emulsification and stabilized by dodecyl-trimethylammonium chloride (DTAC), a commercial cationic surfactant; this nanoemulsion was coated with proportionally very small amounts of κ-carrageenan (at molar charge ratios of Z ≤ 0.0045) that interact predominantly by an electrostatic mechanism with the positively charged sites at the polar heads of DTAC at the nanoemulsion's surface to harness nanocapsules of average size ~250-330 nm and zeta potential (ζ) ranging from ~+80 to +7 mV. The potential application of the new type of developed nanosystems as drug delivery vehicles has yet to be investigated and fully realized.  相似文献   
7.
Six tris(aryloxy)phosphorothionates substituted in the para position of the aromatic rings were synthesized and studied by 31P NMR, X-ray diffraction techniques and ab initio calculations at a RHF/6-31G** level of theory, in order to find the main structural factors associated with the δ31P in these compounds. As the electron-withdrawing (EW) ability of the substituents was increased, an ‘abnormal’ shielding effect on δ31P of the arylphosphorothionates was observed. The analyses of the geometrical properties obtained through both experimental and theoretical methods showed that a propeller-type conformation is preferred for the arylphosphorothionates, except in the case of the tris(O-4-methylphenyl)phosphorothionate, since one of the aromatic rings is not rotated in the same direction as the other two in the solid state. The main features associated with the δ31P NMR of compounds 1-6 were a decrease of the averaged O-P-O angle and mainly the shortening of the PS bond length, which is consistent with an increase of the thiophosphoryl bond order as δ31P values go upfield. On the other hand, comparison of the experimental and calculated bond lengths and bond angles involving α bonded atoms to phosphorus of the six compounds suggested that stereoelectronic interactions of the type nπO-σ*PS, nπO-σ*P-OAr and nπS-σ*P-OAr could be present in the arylphosphorothionates 1-6.  相似文献   
8.
The ability to form a gel through the physical or chemical crosslinking of chitosan has been well documented. In an attempt to mimic biological systems, thermal and pH‐sensitive chitosan cylindrical hydrogels were produced by a combination of physical and chemical crosslinking processes. To this end, chitosan hydrogels prepared from alkali chitin were molded in cylinders and, once washed, were further crosslinked with glutaraldehyde at stoichiometric ratios, R (= [? CH?O]/[? NH2]), of 1.61 and 3.22 × 10?2. Variation in swelling as a result of stepwise changes in temperature between 40 and 2 °C at pH values of 7.0, 7.6, and 8.0 revealed that the system responds in markedly different manners dependent upon the pH. At pH 7.0, cooling from 40 to 2 °C results in contraction of the gel network structure. While raising the temperature from 2 to 40 °C leads to a rapid swelling response (i.e., ca. a twofold increase in the amount of solvent uptake). Subsequent cooling to 2 °C is accompanied by a new contraction cycle. At pH ≥ 7.6 the temperature dependence of the swelling–contraction behavior is exactly the opposite of that observed at pH 7.0. Very similar trends were observed for the gels at both degrees of crosslinking. The swelling–shrinking behavior observed in gels of pH ≥ 7.6, is similar in kind to that of uncrosslinked gels and is interpreted in terms of a lower critical solution temperature (LCST) volume phase transition, driven by hydrophobic association, presumably involving residual acetyl groups in the chitin. The results at pH 7.0 suggest that the slight ionization of the ? NH groups leads to destruction of the hydrophobic hydration thus effectively reversing the negative thermal shrinking.

Evolution of the swelling ratio, S, as a function of time and temperature for crosslinked chitosan hydrogels. Circles represent S values recorded at pH 7.0 and triangles those at pH 7.6.  相似文献   

9.
The swelling of membranes of the polyelectrolyte complex (PEC) between chitosan and alginate shows a similar pattern to that of other PECs. However, if the swelled membranes are dried, a second swelling process is seen which exhibits Fickian behavior. The apparent activation energy was estimated to be 32.8 kJ · mol?1. The release rate of model solutes was highly dependent on their molecular weight and the pH of the medium.

Arrhenius type plot of the temperature dependence of the apparent diffusion coefficients for the membrane of the polyelectrolyte complex between chitosan and alginate in water.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号