首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
化学   28篇
数学   1篇
物理学   4篇
  2023年   2篇
  2020年   6篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   4篇
  2011年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1970年   1篇
排序方式: 共有33条查询结果,搜索用时 187 毫秒
1.
In the research field of single-molecule magnets (SMMs), lanthanoid–lanthanoid interactions, so-called f–f interactions, are known to affect the SMM properties, although their magnitudes are small. In this article, an SMM with very weak f–f interactions is reported, and the effects of the interactions on the SMM properties are discussed. X-ray structural analysis of the DyIII-CdII-phthalocyaninato sextuple-decker complex (Dy2Cd3) reveals that the intramolecular Dy−Dy length in Dy2Cd3 is more than 13 Å, which is longer than the intermolecular Dy−Dy length. Even though the two DyIII ions are far apart, intermolecular ferromagnetic dipole–dipole interactions are observed in Dy2Cd3. From detailed analysis of ac magnetic susceptibilities, quantum tunneling of the magnetization (QTM) in Dy2Cd3 is partially suppressed owing to the existence of very weak Dy−Dy interactions. Our results show that even very weak Dy−Dy interactions act as a dipolar bias, suppressing QTM.  相似文献   
2.
3.
Gd3+ complexes have been shown to undergo unusual slow magnetic relaxation processes similar to those of single-molecule magnets (SMMs), even though Gd3+ does not exhibit strong magnetic anisotropy. To reveal the origin of the slow magnetic relaxation of Gd3+ complexes, we have investigated the magnetic properties and heat capacities of two Gd3+-phthalocyaninato triple-decker complexes, one of which has intramolecular Gd3+–Gd3+ interactions and the other does not. It was found that the Gd3+–Gd3+ interactions accelerate the magnetic relaxation processes. In addition, magnetically diluted samples, prepared by doping a small amount of the Gd3+ complexes into a large amount of diamagnetic Y3+ complexes, underwent dual magnetic relaxation processes. A detailed dynamic magnetic analysis revealed that the coexistence of spin–lattice relaxation and phonon-bottleneck processes is the origin of the dual magnetic relaxation processes.  相似文献   
4.
A neutral mononuclear FeIII complex [FeIII(H‐5‐Br‐thsa‐Me)(5‐Br‐thsa‐Me)]?H2O ( 1 ; H2‐5‐Br‐thsa‐Me=5‐bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three‐step spin‐crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS–2LS and 2HS–4LS, which exhibited reentrant phase‐transition behavior. This study provides a new platform for examining multistability in SCO complexes.  相似文献   
5.
The parallel thiosulfite ligand (SSO2) in a rhodium complex, which is formed by oxygenation of a bridging disulfide, is converted to a bridging hydrocarbyl thiolate ligand and sulfur dioxide gas by the reaction with hydrocarbyl halides.  相似文献   
6.
Single-molecule magnets (SMMs) show superparamagnetic behaviour below blocking temperature at the molecular scale, so they exhibit large magnetic density compared to the conventional magnets. Combining SMMs and molecular conductors in one compound will bring about new physical phenomena, however, the synergetic effects between them still remain unexplored. Here we present a layered molecule-based compound, β′′-(BEDO-TTF)4 [Co(pdms)2]·3H2O (BO4), (BEDO-TTF (BO) and H2pdms are bis(ethylenedioxy)tetrathiafulvalene and 1,2-bis(methanesulfonamido)benzene, respectively), which was synthesized by using an electrochemical approach and studied by using crystal X-ray diffraction. This compound simultaneously exhibited metallic conductivity and SMM behaviour up to 11 K for the first time. The highest electrical conductivity was 400–650 S cm−1 at 6.5 K, which is the highest among those reported so far for conducting SMM materials. Furthermore, antiferromagnetic ordering occurred below 6.5 K, along with a decrease in conductivity, and the angle-independent negative magnetoresistance suggested an effective electron correlation between the conducting BO and Co(pdms)2 SMM layers (d–π interactions). The strong magnetic anisotropy and two-dimensional conducting plane play key roles in the low-temperature antiferromagnetic semiconducting state. BO4 is the first compound exhibiting antiferromagnetic ordering among SMMs mediated by π-electrons, demonstrating the synergetic effects between SMMs and molecular conductors.

A metallic single-molecule magnet was synthesised demonstrating simultaneous metallic conduction and excellent SMM properties at the same temperature range for the first time, with potential applications in molecule-based quantum spintronics.  相似文献   
7.
Reaction of Ni(COD)(2) (COD = cyclooctadiene) with dppm (dppm = bis(diphenylphosphino) methane) followed by addition of alkyl or aryl isocyanides yields the class of nickel(0) dimers Ni(2)(mu-CNR)(CNR)(2)(mu-dppm)(2) (R = CH(3) (1), n-C(4)H(9) (2), CH(2)C(6)H(5) (3), i-C(3)H(7) (4), C(6)H(11) (5), t-C(4)H(9) (6), p-IC(6)H(4) (7), 2,6-(CH(3))(2)C(6)H(3) (8)). The cyclic voltammograms of the dimers exhibit two sequential single electron oxidations to the +1 and +2 forms. Specular reflectance infrared spectroelectrochemical (IRSEC) measurements demonstrate reversible interconversions between the neutral Ni(0) dimers and their +1 and +2 forms. Bulk samples of the +2 forms are prepared by chemical oxidation using [FeCp(2)][PF(6)], while the +1 forms are prepared by the comproportionation of neutral and +2 forms. The neutral complexes 6 and 8 were characterized by X-ray diffraction as symmetric, locally tetrahedral binuclear Ni(0) complexes. The +2 forms of these complexes, 6(2+) and 8(2+), have asymmetric structures with one locally square planar and one locally tetrahedral metal center, evidence for a Ni(II)-Ni(0) mixed valence state. The X-ray structural characterization of 6(+) is symmetrical and qualitatively similar to that of the neutral complex 6. The +1 forms all exhibit intense near IR electronic absorptions that are assigned as intervalence charge transfer (IVCT) bands. On the basis of structural, spectroscopic, and electrochemical data, the +1 forms of the complexes, 1(+)-8(+), are assigned as Robin-Day class III, fully delocalized Ni(+0.5)-Ni(+0.5) mixed valence complexes.  相似文献   
8.
Reaction of trans-[(MCp)(2)(mu-CH(2))(2)Cl(2)] (M = Rh, Ir; Cp = eta(5)-C(5)Me(5)) with Li(2)S(2) afforded the disulfido complexes [(MCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] which were easily oxidized by O(2) to give the oxygenated complexes [(MCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')]. Although [(RhCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] gave a complicated mixture when reacted with CH(2)Cl(2) or CHCl(3), [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] reacted with both CH(2)Cl(2) and CHCl(3) to give the dithioformato complex [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)CH-S:S')]Cl and the cyclotetrasulfido complex [((IrCp)(2)(mu-CH(2))(2))(2)(mu-S(4)-S:S':S":S"')]Cl(2). The oxygenated complexes [(RhCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')] reacted with hydrocarbyl halides to afford bridging hydrocarbyl thiolato complexes accompanied by the generation of SO(2) gas. These complexes have been characterized by NMR spectroscopy, ESI-MS, and X-ray diffraction.  相似文献   
9.
The novel thia-calix[n]pyridines (n = 3, 4, 6) coordinated to copper ions through nitrogen and sulfur atoms to give multinuclear complexes whose structures have been determined by X-ray crystallography and NMR spectra.  相似文献   
10.
NG Kelkar  BK Jain 《Pramana》2001,57(2-3):389-397
We report on a study of the proton induced hyperon production reactions. We discuss the theoretical efforts made towards understanding the existing data and the uncertainties involved in the calculations. Our recent calculations of the missing mass spectra for the ppK + Λp reaction which involve a proper coupled channel treatment of the final state Λp interaction are presented. Significant differences in the results using different models of the hyperon-nucleon interaction are found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号