首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
  国内免费   2篇
化学   49篇
综合类   1篇
数学   27篇
物理学   18篇
  2022年   3篇
  2021年   3篇
  2019年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1989年   1篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
The thermodynamic and extra-thermodynamic dependencies of five types of cytochrome c in water-acetonitrile mixtures of different composition in the presence of immobilised n-octyl ligands as a function of temperature from 278 K to 338 K have been investigated. The corresponding enthalpic, entropic and heat capacity parameters, deltaHdegrees assoc, deltaS degrees assoc and delta C degrees p, have been evaluated from the observed non-linear Van't Hoff plots of these globular proteins in these heterogeneous systems. The relationships between the free energy dependencies, various molecular parameters and extra-thermodynamic dependencies (empirical correlations) of these protein-non-polar ligand interactions have also been examined. Thus, the involvement of enthalpy-entropy compensation effects has been documented for the binding of these cytochrome cs to solvated n-octyl ligands. Moreover, the results confirm that this experimental approach permits changes in molecular surface area due to the unfolding of these proteins on association with non-polar ligands as a function of temperature to be correlated with other biophysical properties. This study thus provides a general procedure whereby the corresponding free energy dependencies of globular proteins on association with solvated non-polar ligands in heterogeneous two-phase systems can be quantitatively evaluated in terms of fundamental molecular parameters.  相似文献   
2.
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P−H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2Ph)(PPh2NR)] (with R = SiMe3 or 4-C6H4−NO2) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P−H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P−H activation to form stable activation products.  相似文献   
3.
Fundamental and experimental differences between X-ray and neutron scattering methods are outlined and the advantages of either radiation for the study of disorder in crystals are described. Special emphasis is laid on their complementarity, e.g. to identify the atomic species involved in the disorder or to decide between the elastic or inelastic nature of the diffuse scattering (static or dynamic disorder). This is illustrated by three examples: LiNbO3 (dynamic nature of chain-like disorder), doped Zr02 (identification of cationic and anionic disorder components) and decagonal quasicrystals (distinction between quasi-isoelectronic elements).  相似文献   
4.
The retention behavior of a set of polar peptides separated on a silica hydride stationary phase was examined with a capillary HPLC system coupled to ESI‐MS detection. The mobile phases consisted of formic acid or acetic acid/acetonitrile/water mixtures with the acetonitrile content ranging from 5 to 80% v/v. The effects on peptide retention of these two acidic buffer additives and their concentrations in the mobile phase were systematically investigated. Strong retention of the peptides on the silica hydride phase was observed with relatively high‐organic low‐aqueous mobile phases (i.e. under aqueous normal‐phase conditions). However, when low concentrations of acetic acid were employed as the buffer additive, strong retention of the peptides was also observed even when high aqueous content mobile phases were employed. This unique feature of the stationary phase therefore provides an opportunity for chromatographic analysis of polar peptides with water‐rich eluents, a feature usually not feasible with traditional RP sorbents, and thus under conditions more compatible with analytical green chemistry criteria. In addition, both isocratic and gradient elution procedures can be employed to optimize peptide separations with excellent reproducibility and resolution under these high aqueous mobile phase conditions with this silica hydride stationary phase.  相似文献   
5.
In this study, the retention behavior of selected hydrophobic and polar bases on a minimally modified silica hydride phase was investigated. From these results and the associated retention plots, significant differences in the chromatographic dependencies of these two classes of basic compounds were evident. The polar bases exhibited strong retention with mobile phases of high organic solvent content, but displayed weak retention with mobile phases of high water content. In contrast, the hydrophobic bases showed “U‐shape” retention dependencies, indicative of the interplay of both RP and normal‐phase retention characteristics. These studies have demonstrated that hydrophobic and polar bases can be simultaneously separated on the same column either under typical RP‐like or aqueous normal‐phase‐like conditions, respectively, with distinctive selectivity. Finally, the effects of temperature on the RP and aqueous normal phase modality of separations with these analytes were investigated, where discrete changes in retention behavior were also observed.  相似文献   
6.
We are presently working on the combination of carbohydrate and dendrimer chemistry, both to develop the synthesis of multivalent glycomimetics and to prepare novel dendrimers with advantageous properties. In the course of this work we have used saccharides as oligofunctional core molecules for the synthesis of carbohydrate-centered dendrimers1 and carbohydrate-centered glycoclusters.2  相似文献   
7.
In this study, the use of monolithic molecularly imprinted polymers in a micropipette tip format allowing the simple and fast extraction of flavonoids from standard solutions and a black tea sample is demonstrated. The imprinted polymer employed quercetin, methacrylic acid or 4‐vinylpyridine, and ethylene glycol dimethacrylate as template, functional monomer, and cross‐linker, respectively. Surface morphologies of the quercetin‐imprinted polymers and the corresponding nonimprinted polymers were characterized by SEM. Extraction of flavonoid standards was performed to evaluate the selectivity and recovery with these imprinted and nonimprinted polymers. Flavonoid compositions in aliquots eluted from the tips were identified using fast GC with flame ionization detection. Maximum specific capacities of 0.2, 5.7, and 16.0 mg/g for catechin, morin, and quercetin, respectively, were obtained with the imprinted polymer prepared with methacrylic acid, with the corresponding recoveries of 99.8, 98.8, and 95.4%, respectively. Efficient extraction by the quercetin‐imprinted polymer of epicatechin, catechin, and quercetin from an apple‐flavored black tea sample was achieved, with GC–MS employed for compound identification for both the tea and extracted samples.  相似文献   
8.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   
9.
In this investigation, methods based on on-probe enzymatic cleavage matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) analyses have been developed, allowing the rapid assignment of phosphorylation sites within phosphoproteins. The procedures involved robotic sample deposition of a phosphoprotein, such as intact bovine β-casein, on stainless steel or gold MALDI plates, on-probe proteolysis with trypsin for 10–180?s at 37°C, on-probe dephosphorylation for 1–10?min at 37°C with alkaline phosphatase, followed by differential mass spectrometry with peptide mass mapping. The dephosphorylation conditions were initially optimized using in-solution tryptic digestion of the phosphoprotein performed in the presence of MS-compatible anionic surfactant sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate. Two methods of trypsin deactivation were investigated, cooling and quenching by acidification, which resulted in the surfactant either staying intact or becoming cleaved, respectively. Since the surfactant had no detrimental effects on dephosphorylation of phosphopeptides, the acidification and neutralization steps were not included in the final analytical method. A protocol, comprising on-probe tandem, surfactant-aided proteolysis for 3?min followed by on-probe dephosphorylation for 10?min was thus established, allowing the rapid identification of location and sequence of phosphopeptides within a phosphoprotein by these procedures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号