首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
化学   20篇
晶体学   2篇
数学   4篇
物理学   4篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1990年   1篇
  1926年   2篇
  1924年   1篇
  1921年   1篇
排序方式: 共有30条查询结果,搜索用时 46 毫秒
1.
Hydrogen bonding in crystalline N,N'-dialkylthioureas was examined with the help of single-crystal X-ray diffraction, DFT calculations, and Cambridge Structural Database (CSD) analysis. A CSD survey indicated that unlike the related urea derivatives, which persistently self-assemble into one-dimensional hydrogen-bonded chains, the analogous thioureas can form two different hydrogen-bonding motifs in the solid state: chains, structurally similar with those found in ureas, and dimers, that further associate into hydrogen-bonded layers. The formation of one motif or another can be manipulated by the bulkiness of the organic substituents on the thiourea group, which provides a clear example of steric control over the hydrogen bonding arrangement in crystalline organic solids.  相似文献   
2.
3.
4.
5.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
6.
Understanding the reaction mechanisms of dehydrogenative Caryl–Caryl coupling is the key to directed formation of π-extended polycyclic aromatic hydrocarbons. Here we utilize isotopic labeling to identify the exact pathway of cyclodehydrogenation reaction in the on-surface synthesis of model atomically precise graphene nanoribbons (GNRs). Using selectively deuterated molecular precursors, we grow seven-atom-wide armchair GNRs on a Au(111) surface that display a specific hydrogen/deuterium (H/D) pattern with characteristic Raman modes. A distinct hydrogen shift across the fjord of Caryl–Caryl coupling is revealed by monitoring the ratios of gas-phase by-products of H2, HD, and D2 with in situ mass spectrometry. The identified reaction pathway consists of a conrotatory electrocyclization and a distinct [1,9]-sigmatropic D shift followed by H/D eliminations, which is further substantiated by nudged elastic band simulations. Our results not only clarify the cyclodehydrogenation process in GNR synthesis but also present a rational strategy for designing on-surface reactions towards nanographene structures with precise hydrogen/deuterium isotope labeling patterns.

Selective deuterations were exploited to synthesize graphene nanoribbons on Au(111) surface with a specific H/D pattern on edges, allowing the determination of cyclodehydrogenation reaction pathway within the framework of pericyclic reactions.  相似文献   
7.
An efficient synthesis of 2,2,3,3,11,11,12,12-octamethyl-1,4,7,10,13-pentaoxacyclohexadecane (1, OM16C5) is described, which affords over an order of magnitude improvement in yield over the previously reported method. The first X-ray crystal structure of 1, as a complex with NaSCN, is also reported.  相似文献   
8.
Custom built : A promising new approach towards more efficient self‐assembled cage receptors through computer‐aided design is demonstrated. The resulting M4L6 tetrahedral cage, internally functionalized with accurately positioned urea hydrogen‐bonding groups (see structure; yellow: predicted, blue: experimental, space‐filling: SO42?), proved to be a remarkably strong sulfate receptor in water.

  相似文献   

9.
Four calix[4]arene benzo-crown-6 ethers functionalized with primary amine groups in various positions have been synthesized. The cesium extraction behavior under alkaline and acidic conditions has been measured for these compounds and compared with that of non-amine containing analogs. Extraction strength when the amine group is neutral is not affected by the amino substituent, but protonation causes a marked decrease in extraction strength, permitting pH-switched back-extraction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号