首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
化学   49篇
数学   1篇
物理学   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   5篇
  2011年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1996年   6篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
排序方式: 共有51条查询结果,搜索用时 312 毫秒
1.
2.
3.
4.
5.
6.
Eu(fod)3-, Yb(fod)3- and Pr(fod)3-induced chemical shifts of the ‘thioaldehydic’ protons in enethial ligands complexed to a cobalt cyclopentadienyl group are unusually large and in the same direction (10–30 ppm downfield per mole of shift reagent per mole of substrate). The shifts of the protons induced by Eu(fod)3 and Pr(fod)3 in the enethial ligands show an alternation in sign on proceeding away from the sulfur atom. In contrast to the results with the fod reagents, the ytterbium and lanthanum shift reagents Yb(thd)3 and La(thd)3 caused only small shifts of protons in the 2-phenylpropenethial ligand. No induced shifts with the Eu or Pr reagents were observed for a cyclopentadienyl cobalt complex of dithioglyoxal. The induced shifts in these enethial complexes may be caused by varying blends of complex formation, contact and pseudocontact shifts. Caution is advised in assigning origins to lanthanide induced shifts in such organometallic systems.  相似文献   
7.
Hexa-peri-hexabenzocoronene derivatives (HBCs) that have hydrogen-bonding functionalities (either amido or ureido groups) adjacent to the aromatic cores have been synthesized to study the effects of intracolumnar hydrogen bonds on the self-assembly behavior of HBCs. The hydrogen bonds effectively increased the aggregation tendency of these compounds in solution. In the bulk state, the typical columnar supramolecular arrangement of HBCs was either stabilized substantially (1 a, 1 b, 2 a, and 2 b), or suppressed by dominant hydrogen-bonding interactions (3). For some of the compounds (1 a, 2 a, and 2 b), the supramolecular arrangement adopted in the liquid-crystalline state was even retained after annealing, presumably owing to the reinforcement of the pi-stacking interactions by the hydrogen bonds. Additionally, the combined effect of the hydrogen bonds and pi-stacking of the aromatic moieties led to the formation of fluorescent organogels, whereby some derivatives were further investigated as novel low molecular-mass organic gelators (LMOGs).  相似文献   
8.
A multicomponent domino reaction that affords 6H-dibenzo[b,d]pyran-6-ones is reported. The overall transformation consists of six reactions: Knoevenagel condensation, transesterification, enamine formation, an inverse electron demand Diels-Alder (IEDDA) reaction, 1,2-elimination, and transfer hydrogenation. Both the diene and dienophile for the key inverse electron demand Diels-Alder (IEDDA) step are generated in situ by secondary amine-mediated processes. In most cases, the yields (10-79%) are considerably better than those obtained using a stepwise process. This methodology is employed in a concise total synthesis of cannabinol.  相似文献   
9.
10.
Diethylaluminium enolates derived from the iron acetyl complex [(η5-C5H5)Fe(CO)(PPh3)COCH3] undergo highly diastereoselective aldol reactions with the homochiral aldehyde, 2,3-O-isopropylidene-D-glyceraldehyde with the matched and mismatched pair reactions being readily identified. In both these reactions the observed diastereoselectivities may be rationalised in terms of the Masamune model for double asymmetric induction. Similarly the tin (II) enolates react in a predictable way, showing complementary diastereoselectivity, although effects attributed to enolate aggregation may suppress the mismatched pair reaction. However, the Masamune model cannot predict the results obtained with lithium enolates, where addition to the electrophile may occur under either chelation or non-chelation control. In the former case, both reagents reverse their selectivities as the initial two control elements are not mutually accommodating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号