首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2022年   1篇
  2020年   1篇
  2013年   1篇
  2009年   1篇
  2007年   4篇
  2006年   3篇
排序方式: 共有11条查询结果,搜索用时 93 毫秒
1.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   
2.
The thioether-functionalized metalloligand ferrocenyl-bis(phosphonite), Fe(C5H4PR)2 (4, R=-OC10H6(micro-S)C10H6O-) is synthesized in three steps starting from ferrocene, and its coordination behavior toward various transition-metal derivatives is described. The reactions of 4 with [Rh(CO)2Cl]2 or M(COD)Cl2 afforded the chelate complexes, cis-[Rh(CO)Cl{Fe(C5H4PR)2-kappaP,kappaP}] (5) or cis-[MCl2{Fe(C5H4PR)2-kappaP,kappaP}] (6, M=PdII; 7, M=PtII), respectively. However, treatment of 4 with CuX (X=Cl, Br, and I) produces binuclear complexes, [Cu2(micro-X)2(MeCN){Fe(C5H4PR)2-kappaP,kappaP}] (8, X=Cl; 9, X=Br; 10, X=I) where the sulfur atom on one side of the ligand is involved in a weak interaction with the copper center. Reaction of 4 with 1 equiv of Ag(PPh3)OTf gives the mononuclear chelate complex [Ag(OTf)PPh3{Fe(C5H4PR)2-kappaP,kappaP}] (11), whereas treatment with 2 equiv of AuCl(SMe2) produces the dinuclear gold complex [Au(Cl){Fe(C5H4PR)2-kappaP,kappaP}Au(Cl)] (12). The crystal structures of 10 and 12 are reported, where a strong metallophilic interaction is observed between the closed-shell metal centers. The palladium complex 6 catalyzes the Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid with excellent turnover numbers (TON up to 1.36x10(5)).  相似文献   
3.
Mesocyclic thioether-aminophosphonite ligands, {-OC10H6(mu-S)C10H6O-}PNC4H8O (2a, 4-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)morpholine) and {-OC10H6(mu-S)C10H6O-}PNC4H8NCH3 (2b, 1-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)-4-methylpiperazine) are obtained by reacting {-OC10H6(mu-S)C10H6O-}PCl (1) with corresponding nucleophiles. The ligands 2a and 2b react with (PhCN)2PdCl2 or M(COD)Cl2 (M = Pd(II) or Pt(II)) to afford P-coordinated cis-complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP}2MCl2] (3a, M = Pd(II), X = O; 3b, M = Pd(II), X = NMe; 4a, M = Pt(II), X = O; 4b, M = Pt(II), X = NMe). Compounds 2a and 2b, upon treatment with [Pd(eta3-C3H5)Cl]2 in the presence of AgOTf, produce the P,S-chelated cationic complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP,kappaS}Pd(eta3-C3H5)](CF3SO3) (5a, X = O and 5b, X = NMe). Treatment of 2a and 2b with (PhCN)2PdCl2 in the presence of trace amount of H2O affords P,S-chelated anionic complexes, [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](H2NC4H8X) (6a, X = O and 6b, X = NMe), via P-N bond cleavage. The crystal structures of compounds 1, 2a, 2b, 4a, and 6a are reported. Compound 6a is a rare example of crystallographically characterized anionic transition metal complex containing a thioether-phosphonate ligand. Most of these palladium complexes proved to be very active catalysts for the Suzuki-Miyaura reaction with excellent turnover number ((TON), up to 9.2 x 10(4) using complex 6a as a catalyst).  相似文献   
4.
Ruthenium(II), copper(I) and silver(I) complexes of large bite bisphosphinite Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2 (1) are described. Reactions of bisphosphinite 1 with [Ru(η6-p-cymene)(μ-Cl)Cl]2 and RuCl2(PPh3)3 afford mono- and bis-chelate complexes [RuCl(η6-p-cymene){η2-Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2-κP,κP}]Cl (2) and trans-[RuCl22-Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2-κP,κP}2] (3), respectively. Treatment of 1 with CuX (X = Cl, Br and I) furnish 10-membered chelate complexes of the type [Cu(X){η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}] (4, X = Cl; 5, X = Br; 6, X = I), whereas [Cu(MeCN)4]PF6 affords a bis-chelated cationic complex [Cu{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}2][PF6] (7). Reaction between 1 and AgOTf produce both mono- and bis-chelated complexes [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}(SO3CF3)] (8) and [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}2][SO3CF3] (9), respectively; whereas the similar reaction of 1 with[Ag(OTf)PPh3] affords chelate complex of the type [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}(PPh3)(SO3CF3)] (10). All the complexes were characterized by 1H NMR, 31P NMR, elemental analysis and mass spectrometry, including low-temperature NMR studies in the case of silver complexes. The molecular structures of 4 and 6 are determined by X-ray diffraction studies. Ruthenium complexes 2 and 3 promote catalytic hydrogenation of styrene and phenylacetylene with good turnover numbers.  相似文献   
5.
The short-bite aminobis(phosphonite), PhN{P(-OC10H6(mu-S)C10H6O-)}2 (2), containing a mesocyclic thioether backbone is synthesized by either treating PhN(PCl2)2 with 2 equiv of thiobis(2,2'-naphthol) or reacting chlorophosphite (-OC10H6(mu-S)C10H6O-)PCl (1) with aniline in the presence of a base. Treatment of 2 with an equimolar amount of Pd(COD)Cl2 in the presence of H2O affords a P-N-P-bridged and P,S-metalated binuclear complex, [PhN(P(-OC10H6(mu-S)C10H6O-)-kappaP)2Pd2Cl2{P(-OC10H6(mu-S)C10H6O-)(O)-kappaP,kappaS}2] (3), whereas the same reaction with 2 equiv of Pd(COD)Cl2 in the presence of H2O and Et3N produces the mononuclear anionic complex [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](Et3NH) (5). By contrast, reaction of 2 with 2 equiv of Pd(COD)Cl2 and H2O in the absence of Et3N gives the hydrogen phosphonate coordinated complex [{(-OC10H6(mu-S)C10H6O-)P(OH)}PdCl2] (4) which converts to the anionic complex in solution or in the presence of a base. Compound 2 on treatment with Pt(COD)X2 (X = Cl or I) afforded P-coordinated four-membered chelate complexes [PhN(P(-OC10H6(mu-S)C10H6O-)-kappaP)2PtX2] (6 X = Cl, 7 X = I). The crystal structures of compounds 2, 3, 5, and 7 are reported. Compound 3 is the first example of a crystallographically characterized binuclear palladium complex containing a bidentate bridging ligand and its hydrolyzed fragments forming metallacycles containing a palladium-phosphorus sigma bond. All palladium complexes proved to be very good catalysts for the Suzuki-Miyaura and Mizoroki-Heck cross-coupling and amination reactions with excellent turnover numbers (TON up to 1.46 x 105 in the case of the Suzuki-Miyaura reaction).  相似文献   
6.
Large bite bisphosphite ligand, 2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2 (2), is obtained by reacting chlorophosphite, {-OC10H6(μ-S)C10H6O-}PCl (1) with 2,6-pyridinedimethanol in presence of triethylamine.Treatment of 2 with aqueous solution of H2O2 or elemental sulfur resulted in the formation of bis(oxide) or bis(sulfide) derivatives, 2,6-C5H3N{CH2OP(E)(-OC10H6)(μ-S)(C10H6O-)}2 (3, E = O; 4, E = S) in quantitative yield.The 10-membered cationic chelate complex, [RuCl(η6-C10H142-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]Cl (5) is produced in the reaction between [Ru(p-cymene)(μ-Cl)(Cl)]2 and bisphosphite 2, whereas the neutral chelate complex, cis-[Rh(CO)Cl{2,6-C5H3N{CH2OP(-OC10H6(μ-S)C10H6O-)}2}-κPP] (6) is isolated in the reaction of 2 with 0.5 equiv.of [Rh(CO)2Cl]2.Compound 2 on treatment with M(COD)Cl2 (M = Pd, Pt) produce the chelate complexes, [MCl22-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (7, M = Pd;10, M = Pt).Similarly the reaction of bisphosphite 2 with Pd(COD)MeCl affords cis-[PdMe(Cl)η2-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP] (8).Treatment of 2 with [Pd(η3- C3H5)Cl]2 in the presence of AgClO4 furnish the cationic complex, [Pd(η3-C3H52-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]ClO4 (9). The binuclear complex, [Au2Cl2{2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (11) is obtained in the reaction of compound 2 with two equiv. of AuCl(SMe2), where the ligand exhibits bridged bidentate mode of coordination. All the complexes are characterized by the 1H NMR, 31P NMR, elemental analysis and mass spectroscopy data. The cationic ruthenium complex 5 is proved to be an active catalyst for the hydrogenation of styrene and α-methyl styrene.  相似文献   
7.
Inexpensive cobalt catalysts derived from N‐heterocylic carbenes (NHC) allowed efficient catalytic C? H bond arylations on heteroaryl‐substituted arenes with widely available aryl chlorides, which set the stage for the preparation of sterically hindered tri‐ortho‐substituted biaryls. Likewise, challenging direct alkylations with β‐hydrogen‐containing primary and even secondary alkyl chlorides proceeded on pyridyl‐ and pyrimidyl‐substituted arenes and heteroarenes. The cobalt‐catalyzed C? H bond functionalizations occurred efficiently at ambient reaction temperature with excellent levels of site‐selectivities and ample scope. Mechanistic studies highlighted that electron‐deficient aryl chlorides reacted preferentially, while the arenes kinetic C? H bond acidity was found to largely govern their reactivity.  相似文献   
8.
The title compound, C20H14O2S, has been obtained in two monoclinic forms, which differ in their unit‐cell dimensions, compactness of packing and conformation. Pairwise association of molecules occurs via complementary O—H...O hydrogen bonding.  相似文献   
9.
Transition metal complexes of bis(2-diphenylphosphinoxynaphthalen-1-yl)methane (1) are described. Bis(phosphinite) 1 reacts with Group 6 metal carbonyls, [Rh(CO)2Cl]2, anhydrous NiCl2, [Pd(C3H5)Cl]2/AgBF4 and Pt(COD)I2 to give the corresponding 10-membered chelate complexes 2, 3 and 5-8. Reaction of 1 with [Rh(COD)Cl]2 in the presence of AgBF4 affords a cationic complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4). Treatment of 1 with AuCl(SMe2) gives mononuclear chelate complex, [(AuCl){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}] (9) as well as a binuclear complex, [Au(Cl){mu-Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}AuCl] (10) with ligand 1 exhibiting both chelating and bridged bidentate modes of coordination respectively. The molecular structures of 2, 6, 7, 9 and 10 are determined by X-ray studies. The mixture of Pd(OAc)2 and effectively catalyzes Suzuki cross-coupling reactions of a range of aryl halides with aryl boronic acid in MeOH at room temperature or at 60 degrees C, giving generally high yields even under low catalytic loads. The cationic rhodium(I) complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4) catalyzes the hydrogenation of styrenes to afford the corresponding alkyl benzenes in THF at room temperature or at 70 degrees C with excellent turnover frequencies.  相似文献   
10.
Copper(I) complexes of short-bite aminobis(phosphonite), PhN{P(–OC10H6(μ-S)C10H6O–)}2 (1) have been synthesized. Reactions of 1 with an excess of CuX (X = Cl, Br, and I) afforded the ligand-bridged binuclear complexes, [PhN(PR-κP)2{Cu(μ-X)(MeCN)}2] (2, X = Cl; 3, X = Br; 4, X = I; R = –OC10H6(μ-S)C10H6O–), whereas treatment with 0.5 equiv. of [Cu(MeCN)4]PF6 produces the mononuclear bischelated cationic complex, [{PhN(PR-κP)2}2Cu](PF6) (5). Single crystal X-ray structures of complexes 3 and 4 are reported. Complex 3 shows strong π–π stacking interactions between the naphthyl moieties, whereas complex 4 shows ligand-supported Cu?Cu metallophilic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号