首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   5篇
数学   3篇
物理学   23篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1993年   4篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有31条查询结果,搜索用时 265 毫秒
1.
2.
3.
4.
5.
Electron impact ionization of a helium atom in a helium nanodroplet is followed by rapid charge migration, which can ultimately result in the localization of the charge on an atomic or molecular solute. This process is studied here for the cases of hydrogen cyanide, acetylene, and cyanoacetylene in helium, using a new experimental method we call optically selected mass spectrometry (OSMS). The method combines infrared laser spectroscopy with mass spectrometry to separate the contributions to the overall droplet beam mass spectrum from the various species present under a given set of conditions. This is done by vibrationally exciting a specific species that exists in a subset of the droplets (for example, the droplets containing a single HCN molecule). The resulting helium evaporation leads to a concomitant reduction in the ionization cross sections for these droplets. This method is used to study the charge migration in helium and reveals that the probability of charge transfer to a solvated molecule does not approach unity for small droplets and depends on the identity of the solvated molecule. The experimental results are explained quantitatively by considering the effect of the electrostatic potential (between the charge and the embedded molecule) on the trajectory of the migrating charge.  相似文献   
6.
7.
The mutual neutralization of anions with Ar+ has been studied by variable electron and neutral density attachment mass spectrometry. Evidence of a previously unobserved plasma loss process, electron-catalyzed mutual neutralization (ECMN), e.g., SF6-+Ar+ + e-→neutrals + e-, is reported. Results for 10 species suggest that ECMN occurs generally and significantly affects the total ion-loss rate in plasmas with electron densities exceeding 10(10) cm-3. ECMN is discussed in the context of other known three-body plasma processes, the mechanisms for which appear insufficient to explain the observed effect. A mechanism for ECMN involving an incident electron facilitating energy transfer to the internal modes of the anion is proposed.  相似文献   
8.
9.
Atomistic simulations are used to characterize the molecular dynamics (MD) of alkyl chains with different functionalizations in different water/acetonitrile mixtures (80/20 and 50/50). Starting from fully equilibrated solvent systems (flat density profile for both components), microheterogeneous structuring of the solvent in the chromatographic system is found for both mixtures. Depending on the functionalization of the alkyl chain (nitrile, amide, nitro, phenyl), differences in the density profiles of the two solvents (water/acetonitrile), the effective width of the stationary phase and the solvent gradients in the overlap region are observed. The solvent mixture (mobile phase) in RPLC is a liquid which is directly involved in the physical process and must be included explicitly. Far from the surface, the solvent displays bulk properties; closer to it the mixed solvent partitions due to the presence of the stationary phase. This creates a gradient in solvent strength perpendicular to the surface which influences the motions of the analyte. The surface is found to define the amount of water that can bind to it and defines its hydrophilic character. Proposals from the literature, such as the existence of persistent water filaments extending from the functionalized silica layer towards the bulk solvent, are discussed. Simulations of acridine orange near a -NH(2)- and -phenol-functionalized surface highlight the different dynamical behaviour (insertion vs. adsorption) of an analyte depending on the functionalization of the surface.  相似文献   
10.
Reported here is a study of the effects of liquid helium cooling on the fragmentation of ions formed by electron impact mass ionization. The molecules of interest are picked up by the helium nanodroplets as they pass through a low pressure oven. Electron impact ionization of a helium atom in the droplet is followed by resonant charge transfer to neighboring helium atoms. When the charge is transferred to the target molecule, the difference in the ionization potentials between helium and the molecule results in the formation of a vibrationally hot ion. In isolation, the hot parent ion would undergo subsequent fragmentation. On the other hand, if the cooling due to the helium is fast enough, the parent ion will be actively cooled before fragmentation occurs. The target molecule used in the present study is triphenylmethanol (TPM), an important species in synthetic chemistry, used to sterically protect hydroxyl groups. Threshold PhotoElectron PhotoIon COincidence (TPEPICO) experiments are also reported for gas-phase TPM to help quantify the ion energetics resulting from the cooling effects of the helium droplets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号