首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
化学   29篇
物理学   10篇
  2013年   4篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
The absolute values of the photodissociation cross sections and lineshapes for 29 sets of predissociative transitions of the ArHD van der Waals complex have been computed. These lineshapes are summed with the correct statistical weighting and compared with the experimentally observed spectrum of McKellar.  相似文献   
2.
Ab initio potential energy and transition dipole moment surfaces are presented for the five lowest singlet even symmetry electronic states of ozone. The surfaces are calculated using the complete active space self consistent field method followed by contracted multireference configuration interaction (MRCI) calculations. A slightly reduced augmented correlation consistent valence triple-zeta orbital basis set is used. The ground and excited state energies of the molecule have been computed at 9282 separate nuclear geometries. Cuts through the potential energy surfaces, which pass through the geometry of the minimum of the ground electronic state, show several closely avoided crossings. Close examination, and higher level calculations, very strongly suggests that some of these seemingly avoided crossings are in fact associated with non-symmetry related conical intersections. Diabatic potential energy and transition dipole moment surfaces are created from the computed ab initio adiabatic MRCI energies and transition dipole moments. The transition dipole moment connecting the ground electronic state to the diabatic B state surface is by far the strongest. Vibrational-rotational wavefunctions and energies are computed using the ground electronic state. The energy level separations compare well with experimentally determined values. The ground vibrational state wavefunction is then used, together with the diabatic B<--X transition dipole moment surface, to form an initial wavepacket. The analysis of the time-dependent quantum dynamics of this wavepacket provides the total and partial photodissociation cross sections for the system. Both the total absorption cross section and the predicted product quantum state distributions compare well with experimental observations. A discussion is also given as to how the observed alternation in product diatom rotational state populations might be explained.  相似文献   
3.
Ab initio valence-bond calculations have been performed on the low-lying states of H2O+, with special attention being focused on the
2B2 state of the ion. The calculated potential energy surface for the
2B2 state is in qualitative agreement with several previously published molecular orbital calculations in predicting an equilibrium angle of about 60°. This prediction is, however, inconsistent with the most recent interpretation of the high-resolution photoelectron spectrum of H2O. Examination of the potential energy surfaces for geometries which have been distorted from C2v symmetry indicates that the
2B2 and Ã2A1 states are strongly coupled by the asymmetric stretching motion of the molecular ion. The presence of such a coupling supports the interpretation of the H2O photoelectron spectrum which invokes excitation of the asymmetric stretching vibration of the ion.  相似文献   
4.
Ab initio multireference configuration interaction potential energy surfaces are computed for the eight lowest singlet surfaces of C(3). These reveal several important features, including several conical intersections in linear, nonlinear, and equilateral triangle geometries. These intersections are important because, particularly for the excited A (1)Pi(u) state, reasonable ab initio results could only be obtained by including nearby, near degenerate, (1)Sigma(u) (-) and (1)Delta(u) states that cross the A (1)Pi(u) state around 4500 cm(-1) above the equilibrium geometry, and a (1)Pi(g) state whose potential in turn crosses the other states about 2000 cm(-1) further up. These states are probably responsible for the complexity of the shorter wavelength UV absorption spectrum of C(3). The computed potential energy surface for the ground, X (1)Sigma(g) (+), state and for the lowest two excited singlet surfaces (which both correlate with the A (1)Pi(u) state in a collinear geometry) are fitted to analytic functional forms. Vibrational energy levels are calculated for both states, taking account of the Renner-Teller coupling in the excited A (1)Pi(u) state. The potential parameters for both states are then least-squares fitted to experimental data. The ground-state fit covers a range of approximately 8500 cm(-1) above the lowest level, and reproduces 100 observed vibrational levels with an average error of 2.8 cm(-1). The A (1)Pi(u) state surfaces cover a range of 3250 cm(-1) above the zero-point level, and reproduce the 44 observed levels in this range with an average error of 2.8 cm(-1).  相似文献   
5.
A new approximate method is presented for the rapid calculation of rotationally inelastic molecular collision cross sections. The method is called the centrifugally decoupled exponential distorted wave (CDEDW) approximation and involves the combination of two well known approximations. The first approximation is the neglect of the off-diagonal coupling terms which arise from the orbital angular momentum operator in the coupled differential equations in the body-fixed axis system. The second approximation is to treat the remaining coupling terms, which arise from the interaction potential, using a unitary perturbation approximation. The CDEDW method is applied to the calculation of total and partial rotationally inelastic cross sections in the ArN2 system, and detailed comparisons are made with exact and several other types of approximate calculations. Agreement with exact calculations is good and often comparable with the coupled states and p-helicity decoupled approximations. The CDEDW method requires a similar amount of computational effort to the infinite order sudden (IOS) approximation, and we show that for the present system the CDEDW method gives more reliable results.  相似文献   
6.
In this study,the three dimensional nanoscale organization in the photoactive layers of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM) is revealed by transmission electron tomography.After annealing treatment,either at elevated temperature or during slow solvent evaporation,nanoscale interpenetrating networks are formed with high crystalline order and favorable concentration gradients of both components through the thickness of the photoactive layer.Such a tailored morphology acco...  相似文献   
7.
The effect of vibrational excitation on the photodissociation cross section of ozone in the Hartley continuum is examined. The calculations make use of newly computed potential energy and transition dipole moment surfaces. The initial vibrational states of the ozone are computed using grid based techniques and the first few ab initio computed vibrational energy level spacings agree to within 10 cm(-1) with experimental values. The computed total absorption cross sections arising from different initial vibrational states of ozone are discussed in the light of the nature of the transition dipole moment surface. The computed cross section for excitation from the ground vibrational-rotational state is in good agreement with the experimentally measured cross section. Excitation of the asymmetric stretching vibration of ozone has a marked effect on both the form and magnitude of the photodissociation cross section. The velocity distributions of highly reactive O(1D) atoms arising from the photodissociation process in different wavelength ranges is also presented. The results show that the O(1D) atoms travel with a most probable translational velocity of 2.030 km s(-1) corresponding to a translational energy of 0.342 eV or 33.0 kJ mol(-1).  相似文献   
8.
Ab initio potential energy curves, transition dipole moments, and spin-orbit coupling matrix elements are computed for HBr. These are then used, within the framework of time-dependent quantum-mechanical wave-packet calculations, to study the photodissociation dynamics of the molecule. Total and partial integral cross sections, the branching fraction for the formation of excited-state bromine atoms Br(2P(1/2)), and the lowest order anisotropy parameters, beta, for both ground and excited-state bromine are calculated as a function of photolysis energy and compared to experimental and theoretical data determined previously. Higher order anisotropy parameters are computed for the first time for HBr and compared to recent experimental measurements. A new expression for the Re[a1(3) (parallel, perpendicular)] parameter describing coherent parallel and perpendicular production of ground-state bromine in terms of the dynamical functions is given. Although good agreement is obtained between the theoretical predictions and the experimental measurements, the discrepancies are analyzed to establish how improvements might be achieved. Insight is obtained into the nonadiabatic dynamics by comparing the results of diabatic and fully adiabatic calculations.  相似文献   
9.
A potential energy surface, calculated using the ab initio multistructure valence-bond technique, is reported for the collinear Li + Li2 system. The ground state potential surface of the system is predicted to have no barrier to reaction and to possess a well of 4.62 kcal/mole (0.200 eV) relative to the infinitely separated reactants with the Li2 at its equilibrium separation. An analytic potential energy surface is derived, which includes empirical corrections for the “diatomic” errors in the ab initio calculation. The empirically corrected surface dissociates to the experimental Li2 potential energy curve when any one of the three lithium atoms is removed to a large distance. Cuts in the ab initio potential energy surface of the lowest electronically excited states of the system are also reported.  相似文献   
10.
Quantum dynamical calculations are reported for the title reaction, for both product arrangement channels and using potential energy surfaces corresponding to the three electronic states, 1 1A', 2 1A', and 1 1A", which correlate with both reactants and products. The calculations have been performed for J=0 using the time-dependent real wavepacket approach by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. Reaction probabilities for both product arrangement channels on all three potential energy surfaces are presented for total energies between 0.1 and 1.1 eV. Product vibrational state distributions at two total energies, 0.522 and 0.722 eV, are also presented for both channels and all three electronic states. Product rotational quantum state distributions are presented for both product arrangement channels and all three electronic states for the first six product vibrational states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号