首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Menaquinone is a lipid-soluble naphthoquinone that is essential for various pivotal functions of bacteria. Naphthoquinone is synthesized from chorismate of the shikimate pathway in microorganisms. Due to its absence in humans and animals, menaquinone biosynthesis has been an attractive target for development of antibiotics against a number of important microbial pathogens, such as Mycobacterium tuberculosis (Mtb). In shikimate pathway, O-succinylbenzoate synthase (OSBS) plays a major role and is one of the major potential drug targets. For Mtb-OSBS, a systematic study was conducted to get an insight about Mtb-OSBS enzyme and the corresponding inhibitors using in silico methods. The 3-D model of Mtb-OSBS was built using structure coordinates of Thermobifida fusca. O-succinylbenzoate synthase, the model, was further refined. The active site amino acids have been identified by comparing the template sequence with the Mtb-OSBS sequence. We identified that Lys108, Asn140, Asp138, Lys110, Glu189, Ser236, Asp188, Arg27, Tyr52, and Ser237 are highly conserved, and these may play a vital role as active residues, similar to that in template protein. As per the competitive binding of substrate (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC)), we screened the SHCHC through AutoDock 4.0. The SHCHC molecule was further modified structurally and optimized through PRODRG server. Docking of the 12 lead molecules for best interactions with Mtb-OSBS has given an insight that all the lead molecules have shown interactions with active site amino acids of Mtb-OSBS. MD simulation analysis report has shown the stable conformation annotations of Mtb-OSBS. These hypothetical studies create another way to develop more potential drugs against the deadly mycobacterium.  相似文献   
2.
3.
Resveratrol (RVS) is a naturally occurring antioxidant, able to display an array of biological activities. In the present investigation, a new derivative of RVS, RVS(a), was synthesized, and its biological activity was determined on U937 cells. It was observed that RVS(a) showed pronounced activity on U937 cells than RVS. RVS(a) is able to induce apoptosis in tumor cell lines through subsequent DNA fragmentation. From the EMSA results, it was evident that RVS(a) was able to suppress the activity of NFkB by interfering its DNA binding ability. Furthermore, the molecular interaction analysis (docking and dynamics) stated that RVS(a) has strong association with the IkB-alpha site of NFkB compared with RVS; this binding nature of RVS(a) might be prevent the NFkB binding ability with DNA. The present findings represent the potential activity of propynyl RVS on U937 cells and signifying it as a one of putative chemotherapeutic drugs against cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号