首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
Pyrosequencing is a relatively recent method for sequencing short stretches of DNA. Because both Pyrosequencing and Sanger dideoxy sequencing were recently used to characterize and validate DNA molecular barcodes in a large yeast gene-deletion project, a meta-analysis of those data allow an excellent and timely opportunity for evaluating Pyrosequencing against the current gold standard, Sanger dideoxy sequencing. Starting with yeast genomic DNA, parallel PCR amplification methods were used to prepared 4747 short barcode-containing constructs from 6000 Saccharomyces cerevisiae gene-deletion strains. Pyrosequencing was optimized for average read lengths of 25-30 bases, which included in each case a 20-mer barcode sequence. Results were compared with sequence data obtained by the standard Sanger dideoxy chain termination method. In most cases, sequences obtained by Pyrosequencing and Sanger dideoxy sequencing were of comparable accuracy, and the overall rate of failure was similar. The DNA in the barcodes is derived from synthetic oligonucleotide sequences that were inserted into yeast-deletion-strain genomic DNA by homologous recombination and represents the most significant amount of DNA from a synthetic source that has been sequenced to date. Although more automation and quality control measures are needed, Pyrosequencing was shown to be a fast and convenient method for determining short stretches of DNA sequence.  相似文献   
2.
A new method for simple and fast clone checking is described. We combined the Pyrosequencing technology with a preprogrammed nucleotide dispensation strategy for fast analysis of DNA constructs. To test this method, the N-terminus region of plasmids constructed for the production of recombinant apyrase was analyzed. Of the ten plasmids tested, seven constructs were correct, two constructs showed one base deletion, and one construct showed deletion of a 195 bp fragment. The preprogrammed nucleotide dispensation strategy allowed the identification of the sequence downstream of the deletions. Thus, this method determines both the location and nature of possible artifacts.  相似文献   
3.
To date, the Pyrosequencing trade mark technology has been performed at 28 degrees C due to the low thermostability of the firefly luciferase. In this study, firefly luciferase was stabilized in the presence of glycine betaine, allowing DNA sequencing at 37 degrees C. By increasing the temperature to 37 degrees C, false signals due to primer-dimers and loop-structures were decreased significantly. In addition, a combination of (i) replacing the natural dGTP with 7'deaza-dGTP in the polymerase chain reaction (PCR), (ii) 1.6 M glycine betaine, and (iii) an increase of the temperature to 37 degrees C enabled us to sequence a DNA template with the initial sequence 3'-ATGGCCCGGGGGGGAGCTCCA em leader 5'. Furthermore, we describe a method to analyze if a primer forms a primer-dimer with extendable 3'-ends.  相似文献   
4.
A multiple-primer DNA sequencing approach suitable for genotyping, detection and identification of microorganisms and viruses has been developed. In this new method two or more sequencing primers, combined in a pool, are added to a DNA sample of interest. The oligonucleotide that hybridizes to the DNA sample will function as a primer during the subsequent DNA sequencing procedure. This strategy is suited for selective detection and genotyping of relevant microorganisms and samples harboring different DNA targets such as multiple variant/infected samples as well as unspecific amplification products. This method is used here in a model system for detection and typing of high-risk oncogenic human papilloma viruses (HPVs) in samples containing multiple infections/variants or unspecific amplification products. Type-specific sequencing primers were designed for four of the most oncogenic (high-risk) HPV types (HPV-16, HPV-18, HPV-33, and HPV-45). The primers were combined and added to a sample containing a mixture of one high-risk (16, 18, 33, or 45) and one or two low-risk types. The DNA samples were sequenced by the Pyrosequencing technology and the Sanger dideoxy sequencing method. Correct genotyping was achieved in all tested combinations. This multiple-sequencing primer approach also improved the sequence data quality for samples containing unspecific amplification products. The new strategy is highly suitable for diagnostic typing of relevant species/genotypes of microorganisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号