首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   1篇
  国内免费   1篇
化学   288篇
晶体学   2篇
力学   10篇
数学   25篇
物理学   106篇
  2021年   3篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2014年   3篇
  2013年   8篇
  2012年   16篇
  2011年   24篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   18篇
  2006年   32篇
  2005年   31篇
  2004年   17篇
  2003年   9篇
  2002年   13篇
  2001年   10篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1997年   12篇
  1996年   11篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   9篇
  1978年   13篇
  1977年   8篇
  1976年   5篇
  1975年   6篇
  1974年   9篇
  1973年   7篇
  1972年   2篇
  1969年   3篇
  1968年   2篇
  1927年   1篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
1.
In order to reduce infant mortality in the municipality of Rio de Janeiro it is desired to encourage all mothers-to-be to attend the appropriate health care facilities. A 3-level hierarchical prenatal–neonatal health care system is described together with a basic model for optimising accessibility to facilities. A genetic algorithm to solve the basic model is developed and some numerical experience reported. Extensions to the basic model and planned future research are briefly indicated.  相似文献   
2.
The radiation-induced decomposition of C4F9I and CF3I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy has been used for photoactivation as well as for studying the photodecomposition of the fluoroalkyl iodide molecules, the attachment of the photofragments to the diamond surface, and the thermal decomposition of the fluoroalkyl ligands. Measured chemical shifts agree well with ab initio calculations of both C 1s and F 1s binding energies. It is found that chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the range 300 to 700 K and this reactivity difference is rationalized on steric grounds. Both of these thermal decomposition processes produce surface C---F bonds on the diamond. The surface C---F species thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides; I atoms produced photolytically abstract H from surface C---H bonds to yield hydrogen iodide at 119 K allowing diamond fluorination. The attachment of chemisorbed F species to the diamond (100) surface causes band bending as the surface states are occupied as a result of chemisorption. This results in a shift to higher binding energy of the diamond-related C 1s levels present in the surface and subsurface regions which are sampled by XPS on the diamond. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the action of atomic F, molecular F2, XeF2 and F-containing plasmas.  相似文献   
3.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   
4.
A carbon dioxide (CO(2))-based microencapsulation technique was used to impregnate indomethacin, a model drug, into biodegradable polymer nanoparticles. Compressed CO(2) was emulsified into aqueous suspensions of biodegradable particles. The CO(2) plasticizes the biodegradable polymers, increasing the drug diffusion rate in the particles so that drug loading is enhanced. Four types of biodegradable polymers were investigated, including poly(d,l-lactic acid) (PLA), poly(d,l-lactic acid-co-glycolic acid) (PLGA) with two different molar ratios of LA to GA, and a poly(d,l-lactic acid-b-ethylene glycol) (PLA-PEG) block copolymer. Biodegradable nanoparticles were prepared from polymer solutions through nonsolvent-induced precipitation in the presence of surfactants. Indomethacin was incorporated into biodegradable nanoparticles with no change of the particle size and morphology. The effects of a variety of experimental variables on the drug loadings were investigated. It was found that the drug loading was the highest for PLA homopolymer and decreased in PLGA copolymers as the fraction of glycolic acid increased. Indomethacin was predicted to have higher solubility in PLA than in PLGA based on the calculated solubility parameters. The drug loading in PLA increased markedly as the temperature for impregnation was increased from 35 to 45 degrees C. Drug release from the particles is a diffusion-controlled process, and sustained release can be maintained over 10 h. A simple Fickian diffusion model was used to estimate the diffusion coefficients of indomethacin in the biodegradable polymers. The diffusion coefficients are consistent with previous studies, suggesting that the polymer properties are unchanged by supercritical fluid processing. Supercritical CO(2) is nontoxic, easily separated from the polymers, can extract residual organic solvent, and can sterilize biodegradable polymers. The CO(2)-based microencapsulation technique is promising for the production of drug delivery devices without the use of harmful solvents.  相似文献   
5.
The mechanism for nitrogen activation by molybdenum complexes is a complicated one, involving as it does the coupling of a quartet molybdenum reactant with a singlet nitrogen molecule, passing via a series of quartet and doublet encounter complexes to a triplet intermediate, with the subsequent spin crossing to the singlet surface which then leads via a singlet transition state to the final pair of singlet products. We have investigated in detail a variety of levels of theory to describe the crossing of these electronic surfaces and have calculated both lower-bound and actual minimum energy crossing points for the key spin inversion processes.  相似文献   
6.
The adsorption of methanethiol and n-propanethiol on the Au(111) surface has been studied by temperature-programmed desorption (TPD), Auger electron spectroscopy (AES), and low-temperature scanning tunneling microscopy (LT-STM). Methanethiol desorbs molecularly from the chemisorbed monolayer at temperatures below 220 K in three overlapping desorption processes. No evidence for S-H or C-S bond cleavage has been found on the basis of three types of observations: (1) A mixture of chemisorbed CH3SD and CD3SH does not yield CD3SD, (2) no sulfur remains after desorption, and (3) no residual surface species remain when the adsorbed layer is heated to 300 K as measured by STM. On the other hand, when defects are introduced on the surface by ion bombardment, the desorption temperature of CH3SH is extended to 300 K and a small amount of dimethyl disulfide is observed to desorb at 410 K, indicating that S-H bond scission occurs on defect sites on Au(111) followed by dimerization of CH3S(a) species. Propanethiol also adsorbs nondissociatively on the Au(111) surface and desorbs from the surface below 250 K.  相似文献   
7.
Peter Yates  K. E. Stevens 《Tetrahedron》1981,37(25):4401-4410
(±) - exo - 2,6,6 - Trimethyltricyclo[5.3.1.01,5]undecane - 8,10 - dione (11) has been synthesized from dimethyl 6,6 - dimethyl - 5 - oxobicyclo[2.2.2]oct - 7 - ene dicarboxylate (17). This constitutes a new synthesis of cedrol (3) since 11 has previously been converted to this compound.  相似文献   
8.
The acidity functions of aqueous trifluoroacetic and trifluoromethanesulphonic acid mixtures, and aqueous hexafluoropropane-2, 2-diol solutions, have been determined by differential pulse polarography. The apparent shift of the half-wave potential for the ferrocene—ferricinium couple, as the solvent composition is changed, is used to indicate the change in potential of a glass electrode; acidity is measured as the HGF acidity function. The densities of two of these solvent systems as a function of composition are also reported. Trifluoromethanesulphonic acid—water mixtures represent the strongest aqueous acid solvent system so far studied.  相似文献   
9.
An organic solvent-free method for encapsulating progesterone at high loadings within micron-sized inert latex polymer beads is reported. This approach makes use of a polymeric surfactant to emulsify carbon dioxide into an aqueous latex suspension. In this way, preformed approximately 4 microm polystyrene (PS) microparticles surface-grafted with poly(N-vinylpyrrolidone) (PVP) were plasticized and swollen followed by rapid partitioning of progesterone into the polymer matrix. The as-prepared polystyrene beads incorporated over 10% progesterone by weight while maintaining their initial size and morphological uniformity. Dissolution experiments were also carried out to obtain the release profile of progesterone entrapped within the PVP/PS particles.  相似文献   
10.
Infrared spectroscopy has been used to make the first experimental discrimination between molecules bound by physisorption on the exterior surface of carbon single-walled nanotubes (SWNTs) and molecules bound in the interior. In addition, the selective displacement of the internally bound molecules has been observed as a second adsorbate is added. SWNTs were opened by oxidative treatment with O(3) at room temperature, followed by heating in a vacuum to 873 K. It was found that, at 133 K and 0.033 Torr, CF(4) adsorbs on closed SWNTs, exhibiting its nu(3) asymmetric stretching mode at 1267 cm(-1) (red shift relative to the gas phase, 15 cm(-1)). Adsorption on the nanotube exterior is accompanied by adsorption in the interior in the case of opened SWNTs. Internally bound CF(4) exhibits its nu(3) mode at 1247 cm(-1) (red shift relative to the gas phase, 35 cm(-1)). It was shown that, at 133 K, Xe preferentially displaces internally bound CF(4) species, and this counterintuitive observation was confirmed by molecular simulations. The confinement of CF(4) inside (10,10) single-walled carbon nanotubes does not result in the production of lattice modes that are observed in large 3D ensembles of CF(4).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号