首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
化学   22篇
力学   1篇
数学   2篇
物理学   3篇
  2017年   2篇
  2014年   3篇
  2013年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
We report the synthesis of modified Cram‐type cavitands bearing one or two fluorescent labels for single‐molecule spectroscopic studies of vase? kite conformational switching (Scheme 3). Syntheses were performed by stepwise bridging of the four couples of neighboring H‐bonded OH groups of resorcin[4]arene bowls (Schemes 2 and 3). The new substitution patterns enable the construction of a large variety of future functional architectures. 1H‐NMR Investigations showed that the new partially and differentially bridged cavitands feature temperature‐ and pH‐triggered vase? kite conformational isomerism similar to symmetrical cavitands with four identical quinoxaline bridges (Table). It was discovered that vase? kite switching of cavitands is strongly solvent‐dependent.  相似文献   
2.
3.
The partially bridged resorcin[4]arene cavitand featuring a cleft-shaped recognition site formed by two anti-quinoxaline bridges and four convergent HO-groups was prepared in three steps and characterised by X-ray crystallography; cavitand was found to be a selective receptor for steroidal substrates in CDCl3, with the best binding observed for steroids with a flat A-ring and two H-bonding sites on rings A and C/D.  相似文献   
4.
5.
We study a class of stationary transport equation with nonlocal low-order tems We obtain the existence and uniqueness of a solution in sobolev spaces  相似文献   
6.
7.
非线性涡黏性系数模型和代数应力模型联系了线性涡黏性系数湍流模型和完整的微分 雷诺应力模型.随着它们受到日益关注,其形式也越来越多样化.本篇综述的目的是对这些模 型加以总结并比较它们之间的共同点及不同之处,指出它们与完整微分雷诺应力模型之间的 关系,以及相对于线性涡黏性系数模型而言它们在预报流场上所具有的优势.  相似文献   
8.
The controllable switching of suitably bridged resorcin[4]arene cavitands between a "vase" conformation, with a cavity capable of guest inclusion, and a "kite" conformation, featuring an extended flattened surface, provides the basis for ongoing developments of dynamic molecular receptors, sensors, and molecular machines. This paper describes the synthesis, X-ray crystallographic characterization, and NMR analysis of the "vase-kite" switching behavior of a fully pyrazine-bridged cavitand and five other mixed-bridged quinoxaline-bridged cavitands with one methylene, phosphonate, or phosphate bridge. The pyrazine-bridged resorcin[4]arene cavitand displayed an unexpectedly high preference for the kite conformation in nonpolar solvents, relative to the quinoxaline-bridged analogue. This observation led to extensive solvent-dependent switching studies that provide a detailed picture of how solvent affects the thermal vase-kite equilibration. As for any thermodynamic process in the liquid phase, the conformational equilibrium is affected by how the solvent stabilizes the two individual states. Suitably sized solvents (benzene and derivatives) solvate the cavity of the vase form and reduce the propensity for the vase-to-kite transition. Correspondingly, the kite geometry becomes preferred in bulky solvents such as mesitylene, incapable of penetrating the vase cavity. As proposed earlier by Cram, the kite form is preferred at low temperatures due to the more favorable enthalpy of solvation of the enlarged surface. Furthermore, the kite conformation is more preferred in solvents with substantial hydrogen-bonding acidity: weak hydrogen-bonding interactions between the mildly basic quinoxaline and pyrazine nitrogen atoms and solvent molecules are more efficient in the open kite than in the closed vase form. Vase-to-kite conversion is entirely absent in dipolar aprotic solvents lacking any H-bonding acidity. Thermal vase-kite switching requires fully quinoxaline- or pyrazine-bridged cavitands, whereas pH-controlled switching is also applicable to systems incorporating only two or three such bridges.  相似文献   
9.
10.
We report the synthesis and structural characterization of modified Cram‐type, resorcin[4]arene‐based cavitands. Two main loci on the cavitand backbone were selected for structural modification: the upper part (wall domain) and the lower part (legs). Synthesis of unsymmetrically bridged cavitands with different wall components (i.e., 7, 8 , and 14 – 18 ) was performed by stepwise bridging of the four couples of neighboring, H‐bonded OH‐groups of octol 1a (Schemes 1, 2, 4, and 5). Cavitands with modified legs (i.e., 20, 24, 27 , and 28 ), targeted for surface immobilization, were synthesized by short routes starting from suitable aldehyde starting materials incorporating either the fully preformed leg moieties or functional precursors to the final legs (Schemes 7–10). The new cavitand substitution patterns described in this paper should enable the construction of a wide variety of functional architectures in the future. X‐Ray crystallography afforded the characterization of cavitands 2c (Fig. 3) and 24 (Fig. 7) in the vase conformation, with 2c featuring a well‐ordered CH2Cl2 guest molecule in its cavity. A particular highlight is the X‐ray crystal‐structure determination of octanitro derivative 19 (Scheme 6), which, for the first time, shows a cavitand, lacking substituents in the ortho‐position to the two O‐atoms of the four resorcinol moieties, in the kite‐conformation (Fig. 5).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号