首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2024年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.  相似文献   
2.
An original concept of an enzyme multibiosensor for determination of toxic substances based on enzyme inhibition analysis has been proposed and its main performances have been analysed. For the development of this multibiosensor, two types of transducers such as potentiometric pH-sensitive field-effect transistors and conductometric thin-films interdigitated electrodes, and three enzymes, namely urease, acetylcholinesterase and butyrylcholinesterase have been used. The experimental data have been treated by multivariate correspondence analysis. A complete procedure for a simultaneous determination of some heavy metal ions and pesticides has been proposed and its advantages have been discussed.  相似文献   
3.
This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry.The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges.Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described.We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.  相似文献   
4.
Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM) is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India) for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG). In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2).  相似文献   
5.
Several electrochemical biosensors based on various enzyme inhibition effects have been designed; their laboratory prototypes have been manufactured and thoroughly investigated. It should be noted that such biosensors are adapted to large-scale production technologies. A number of advantages and disadvantages of developed biosensors based on enzyme inhibition has been discussed. It is important that all developed biosensors are not opposite to traditional analytical methods, but complement them. This is an additional system of quick and early warning about the presence of toxic substances in the environment. Such systems can save time and money in emergencies due to the possibility of quick decision-making on local environmental problems. If necessary, more accurate, but time-consuming and expensive traditional methods could be used for further validation and additional research of samples previously tested by biosensors.  相似文献   
6.
The class of thermotropic ionic liquid crystals (LCs) of the metal alkanoates possesses a number of unique properties, such as intrinsic ionic conductivity, high dissolving ability and ability to form time-stable mesomorphic glasses. These ionic LCs can be used as nanoreactors for the synthesis and stabilisation of different types of nanoparticles (NPs). Thus, some semiconductors, metals and core/shell NPs were chemically synthesised in the thermotropic ionic liquid crystalline phase (smectic A) of the cadmium octanoate (CdC8) and of the cobalt octanoate (CoC8). By applying the scanning electron microscopy, the cadmium and cobalt octanoate composites containing CdS, Au, Ag and core/shell Au/CdS NPs have been studied. NPs’ sizes and dispersion distribution of the NPs’ size in the nanocomposites have been obtained.  相似文献   
7.
The applicability of an enzyme biosensor based on pH-ISFETs for direct determination of total glycoalkaloids content in real potato samples, without any pre-treatment, is shown. The results of determination of the total glycoalkaloids concentrations in potato samples from different experimental varieties obtained by the biosensor are well correlated with the analogous data obtained by the HPLC method with standard complex sample pre-treatment procedure. The detection of total glycoalkaloids content by biosensors is reproducible, the relative standard deviation was around 3%. The dependence of total glycoalkaloids content on various parts of the potato tuber and their size, different growing area has been shown using the biosensor developed.The method based on biosensors is cheap, easy to operate and requires a shorter analysis time than the one needed using traditional methods for glycoalkaloids determination. The biosensor can operate directly on potato juice, or even directly on a suspension of potato or plant material. It can provide a way to save time and costs, with a possibility of taking rapid assessment of total glycoalkaloids content in a wide variety of potato cultivars. Furthermore the operational and storage stability of this biosensor are quite good with a drift lower than 1% per day and response being stable for more than 3 months.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号