首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   7篇
数学   2篇
物理学   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
  2000年   2篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 250 毫秒
1
1.
2.
Several lignin model compounds were examined to test whether gas-phase ion–molecule reactions of trimethylborate (TMB) in a FTICR can be used to differentiate the ortho-, meta-, and para-isomers of protonated aromatic compounds, such as those formed during degradation of lignin. All three regioisomers could be differentiated for methoxyphenols and hydroxyphenols. However, only the differentiation of the ortho-isomer from the meta- and para-isomers was possible for hydroxyacetophenones and hydroxybenzoic acids. Consideration of the previously reported proton affinities at all basic sites in the isomeric hydroxyphenols, and the calculated proton affinities at all basic sites in the three methoxyphenol isomers, revealed that the proton affinities of the analytes relative to that of TMB play an important role in determining whether and how they react with TMB. The loss of two methanol molecules (instead of one) from the adducts formed with TMB either during ion–molecule reactions, or during sustained-off resonance irradiated collision-activated dissociation of the ion–molecule reaction products, revealed the presence of two functionalities in almost all the isomers. This finding supports earlier results suggesting that TMB can be used to count the functionalities in unknown oxygen-containing analytes.  相似文献   
3.
Gas-phase reactivity of a positively charged aromatic σ,σ-biradical (N-methyl-6,8-didehydroquinolinium) was examined toward six aliphatic amino acids and 15 dipeptides by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR) and laser-induced acoustic desorption (LIAD). While previous studies have revealed that H-atom and NH2 abstractions dominate the reactions of related monoradicals with aliphatic amino acids and small peptides, several additional, unprecedented reaction pathways were observed for the reactions of the biradical. For amino acids, these are 2H-atom abstraction, H2O abstraction, addition — CO2, addition — HCOOH, and formation of a stable adduct. The biradical reacts with aliphatic dipeptides similarly as with aliphatic amino acids, but undergoes also one additional reaction pathway, addition/C-terminal amino acid elimination (addition — CO — NHCHRC). These reactions are initiated by H-atom abstraction by the biradical from the amino acid or peptide, or nucleophilic addition of an NH2 or a HO group of the amino acid or peptide at the radical site at C-6 in the biradical. Reactions of the unquenched C-8 radical site then yield the products not observed for related monoradicals. The biradical reacts with aromatic dipeptides with an aromatic ring in N-terminus (i.e., Tyr-Leu, Phe-Val, and Phe-Pro) similarly as with aliphatic dipeptides. However, for those aromatic dipeptides that contain an aromatic ring in the C-terminus (i.e., Leu-Tyr and Ala-Phe), one additional pathway, addition/N-terminal amino acid elimination (addition — CO — NHCHRN), was observed. This reaction is likely initiated by radical addition of the biradical at the aromatic ring in the C-terminus. Related monoradicals add to aromatic amino acids and small peptides, which is followed by Cα-Cβ bond cleavage, resulting in side-chain abstraction by the radical. For biradicals, with one unquenched radical site after the initial addition, the reaction ultimately results in the loss of the N-terminal amino acid. Similar to monoradicals, the C-S bond in amino acids and dipeptides was found to be especially susceptible to biradical attack.  相似文献   
4.
5.
Experimental and computational studies on the formation of three gaseous, positively‐charged para‐benzyne analogues in a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer are reported. The structures of the cations were examined by isolating them and allowing them to react with various neutral reagents whose reactions with aromatic carbon‐centered σ‐type mono‐ and biradicals are well understood. Cleavage of two iodine–carbon bonds in N‐deuterated 1,4‐diiodoisoquinolinium cation by collision‐activated dissociation (CAD) produced a long‐lived cation that showed nonradical reactivity, which was unexpected for a para‐benzyne. However, the reactivity closely resembles that of an isomeric enediyne, N‐deuterated 2‐ethynylbenzonitrilium cation. A theoretical study on possible rearrangement reactions occurring during CAD revealed that the cation formed upon the first iodine atom loss undergoes ring‐opening before the second iodine atom loss to form an enediyne instead of a para‐benzyne. Similar results were obtained for the 5,8‐didehydroisoquinolinium cation and the 2,5‐didehydropyridinium cation. The findings for the 5,8‐didehydroisoquinolinium cation are in contradiction with an earlier report on this cation. The cation described in the literature was regenerated by using the literature method and demonstrated to be the isomeric 5,7‐didehydro‐isoquinolinium cation and not the expected 5,8‐isomer.  相似文献   
6.
New first- and high-order centred methods for conservation lawsare presented. Convenient TVD conditions for constructing centredTVD schemes are then formulated and some useful results areproved. Two families of centred TVD schemes are constructedand extended to nonlinear systems. Some numerical results arealso presented.  相似文献   
7.
While atmospheric pressure ionization methodologies have revolutionized the mass spectrometric analysis of nonvolatile analytes, limitations native to the chemistry of these methodologies hinder or entirely inhibit the analysis of certain analytes, specifically, many nonpolar compounds. Examination of various analytes, including asphaltene and lignin model compounds as well as saturated hydrocarbons, demonstrates that atmospheric pressure chemical ionization (APCI) using CS2 as the reagent produces an abundant and stable molecular ion (M+?) for all model compounds studied, with the exception of completely saturated aliphatic hydrocarbons and the two amino acids tested, arginine and phenylalanine. This reagent substantially broadens the applicability of mass spectrometry to nonvolatile nonpolar analytes and also facilitates the examination of radical cation chemistry by mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
The chemical properties of a 1,8-didehydronaphthalene derivative, the 4,5-didehydroisoquinolinium cation, were examined in the gas phase in a dual-cell Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. This is an interesting biradical because it has two radical sites in close proximity, yet their coupling is very weak. In fact, the biradical is calculated to have approximately degenerate singlet and triplet states. This biradical was found to exclusively undergo radical reactions, as opposed to other related biradicals with nearby radical sites. The first bond formation occurs at the radical site in the 4-position, followed by that in the 5-position. The proximity of the radical sites leads to reactions that have not been observed for related mono- or biradicals. Interestingly, some ortho-benzynes have been found to yield similar products. Since ortho-benzynes do not react via radical mechanisms, these products must be especially favorable thermodynamically.  相似文献   
9.
Enzymatic digestion of proteins and analysis of the resulting peptides by mass spectrometry is an established approach in proteomics and in clinical and environmental chemistry. The long digestion times of several hours prevent the fast turnover of samples and results. Qualitative applications showed that microwave radiation profoundly shortens enzymatic digestion. However, its usefulness for quantitative applications had not been assessed. In this study, the microwave-assisted enzymatic digestion of hemoglobin at different temperatures, buffer concentrations, and digestion times was assessed and compared with conventional digestion for the proteolytic enzymes trypsin and Glu-C. A microwave-assisted enzymatic digestion method optimized for digestion time and temperature was applied for the analysis of glycated hemoglobin HbA1c and compared with a reference method. Using trypsin, complete digestion was obtained at 50 degrees C within 20 min. Under these conditions, the digestion efficiency was 20% higher than with conventional trypsin digestion. These effects were not observed with Glu-C as enzyme, probably because of the decreased stability of Glu-C at elevated temperatures in comparison with the trypsin used. The comparison of the optimized microwave-assisted digestion method using trypsin with the reference method for HbA1c using Glu-C gave a close correlation in the results (R2: 0.996). A significant bias of 0.33% HbA1c was observed, with higher values obtained with the microwave-assisted tryptic digest; this finding might have resulted from the use of a different enzyme. This study showed that microwave-assisted enzymatic digestion can substantially reduce digestion times to minutes and can be used in qualitative as well as quantitative applications.  相似文献   
10.
The chemical properties of a 1,8‐didehydronaphthalene derivative, the 4,5‐didehydroisoquinolinium cation, were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. This is an interesting biradical because it has two radical sites in close proximity, yet their coupling is very weak. In fact, the biradical is calculated to have approximately degenerate singlet and triplet states. This biradical was found to exclusively undergo radical reactions, as opposed to other related biradicals with nearby radical sites. The first bond formation occurs at the radical site in the 4‐position, followed by that in the 5‐position. The proximity of the radical sites leads to reactions that have not been observed for related mono‐ or biradicals. Interestingly, some ortho‐benzynes have been found to yield similar products. Since ortho‐benzynes do not react via radical mechanisms, these products must be especially favorable thermodynamically.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号