首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学   2篇
物理学   2篇
  2020年   1篇
  2015年   1篇
  2012年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We demonstrate the generation of waveform-controlled laser pulses with 1?mJ pulse energy and a full-width-half-maximum duration of ~4 fs, therefore lasting less than two cycles of the electric field oscillating at their carrier frequency. The laser source is carrier-envelope-phase stabilized and used as the backbone of a kHz repetition rate source of high-harmonic continua with unprecedented flux at photon energies between 100 and 200?eV (corresponding to a wavelength range between 12-6?nm respectively). In combination we use these tools for the complete temporal characterization of the laser pulses via attosecond streaking spectroscopy.  相似文献   
2.
Asymmetrically substituted tertiary phosphines and quaternary phosphonium salts are used extensively in applications throughout industry and academia. Despite their significance, classical methods to synthesize such compounds often demand either harsh reaction conditions, prefunctionalization of starting materials, highly sensitive organometallic reagents, or expensive transition-metal catalysts. Mild, practical methods thus remain elusive, despite being of great current interest. Herein, we describe a visible-light-driven method to form these products from secondary and primary phosphines. Using an inexpensive organic photocatalyst and blue-light irradiation, arylphosphines can be both alkylated and arylated using commercially available organohalides. In addition, the same organocatalyst can be used to transform white phosphorus (P4) directly into symmetrical aryl phosphines and phosphonium salts in a single reaction step, which has previously only been possible using precious metal catalysis.  相似文献   
3.
A route is reported for the synthesis of two electron‐accepting phthalocyanines featuring linkers with different lengths as sensitizers for p‐type dye‐sensitized solar cells (DSSCs). Importantly, our devices based on novel nanorod‐like CuO photocathodes showed high efficiencies of up to 0.191 %: the highest value reported to date for CuO‐based DSSCs.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号