首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   19篇
物理学   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
排序方式: 共有20条查询结果,搜索用时 453 毫秒
1.
We report second-order rate constants kDO (M-1 s-1) for exchange for deuterium of the C(2)-proton of a series of simple imidazolium cations to give the corresponding singlet imidazol-2-yl carbenes in D2O at 25 degrees C and I = 1.0 (KCl). Evidence is presented that the reverse protonation of imidazol-2-yl carbenes by solvent water is limited by solvent reorganization and occurs with a rate constant of kHOH = kreorg = 10(11) s-1. The data were used to calculate reliable carbon acid pK(a)s for ionization of imidazolium cations at C(2) to give the corresponding singlet imidazol-2-yl carbenes in water: pKa = 23.8 for the imidazolium cation, pKa = 23.0 for the 1,3-dimethylimidazolium cation, pKa = 21.6 for the 1,3-dimethylbenzimidazolium cation, and pKa = 21.2 for the 1,3-bis-((S)-1-phenylethyl)benzimidazolium cation. The data also provide the thermodynamic driving force for a 1,2-hydrogen shift at a singlet carbene: K12 = 5 x 10(16) for rearrangement of the parent imidazol-2-yl carbene to give neutral imidazole in water at 298 K, which corresponds to a favorable Gibbs free energy change of 23 kcal/mol. We present a simple rationale for the observed substituent effects on the thermodynamic stability of N-heterocyclic carbenes relative to a variety of neutral and cationic derivatives that emphasizes the importance of the choice of reference reaction when assessing the stability of N-heterocyclic carbenes.  相似文献   
2.
[reaction: see text]. The sum of the rate constants for solvolysis and 18O-scrambling of 4-MeC6H4(13)CH(Me)18OC(O)C6F5 in 50/50 (v/v) trifluoroethanol/water, k(solv) + k(iso) = 1.22 x 10(-5) s(-1), is larger than k(solv) = 1.06 x 10(-5) s(-1) for solvolysis of the unlabeled ester. This shows that the ion pair intermediate undergoes significant internal return. The data give k(-1) = 7 x 10(9) s(-1) for internal return by unimolecular collapse of the ion pair, which is significantly larger than k(Nu) = 5 x 10(8) M(-1) x s(-1) for bimolecular nucleophilic addition of carboxylate anions to 4-MeC6H4CH(Me)+.  相似文献   
3.
The reaction between 5'-deoxypyridoxal and glycine in D2O buffered at pD 7.0 does not result in significant formation of the expected products of pyridoxal-catalyzed transamination or deuterium exchange of the alpha-amino protons of glycine, but rather gives a quantitative yield of the two diastereomeric products of the formal Claisen-type addition of glycine to 5'-deoxypyridoxal. The unexpected extensive formation of these products reflects the extraordinary selectivity of the 5'-deoxypyridoxal-stabilized glycine enolate toward addition to the carbonyl group of 5'-deoxypyridoxal in the protic solvent water.  相似文献   
4.
Equilibrium constants in D2O were determined by 1H NMR analyses for formation of imines/iminium ions from addition of glycine methyl ester to acetone and from addition of glycine to phenylglyoxylate. First-order rate constants, also determined by 1H NMR, are reported for deuterium exchange between solvent D2O and the alpha-amino carbon of glycine methyl ester and glycine in the presence of increasing concentrations of ketone and Br?nsted bases. These rate and equilibrium data were used to calculate second-order rate constants for deprotonation by DO- and by Br?nsted bases of the alpha-imino carbon of the ketone adducts. Formation of the iminium ion between acetone and glycine methyl ester and between phenylglyoxylate and glycine is estimated to cause 7 unit and 15 unit decreases, respectively, in the pKa's of 21 and 29 for deprotonation of the parent carbon acids. The effect of formation of iminium ions to phenylglyoxylate and to 5'-deoxypyridoxal (DPL) [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] on the carbon acidity of glycine is similar. However, DPL is a much better catalyst than phenylglyoxylate of deprotonation of glycine, because of the exceptionally large thermodynamic driving force for conversion of the amino acid and DPL to the reactive iminium ion.  相似文献   
5.
A value of k(H) = 1.5 x 10(-)(3) M(-)(1) s(-)(1) has been determined for the generation of simple p-quinone methide by the acid-catalyzed cleavage of 4-hydroxybenzyl alcohol in water at 25 degrees C and I = 1.0 (NaClO(4)). This was combined with k(s) = 5.8 x 10(6) s(-)(1) for the reverse addition of solvent water to the 4-hydroxybenzyl carbocation [J. Am. Chem. Soc. 2002, 124, 6349-6356] to give pK(R) = -9.6 as the Lewis acidity constant of O-protonated p-quinone methide. Values of pK(R) = 2.3 for the Lewis acidity constant of neutral p-quinone methide and pK(add) = -7.6 for the overall addition of solvent water to p-quinone methide to form 4-hydroxybenzyl alcohol are also reported. The thermodynamic driving force for transfer of the elements of water from formaldehyde hydrate to p-quinone methide to form formaldehyde and p-(hydroxymethyl)phenol (4-hydroxybenzyl alcohol) is determined as 6 kcal/mol. This relatively small driving force represents the balance between the much stronger chemical bonds to oxygen at the reactant formaldehyde hydrate than at the product p-(hydroxymethyl)phenol and the large stabilization of product arising from the aromatization that accompanies solvent addition to p-quinone methide. The Marcus intrinsic barrier for nucleophilic addition of solvent water to the "extended" carbonyl group at p-quinone methide is estimated to be 4.5 kcal/mol larger than that for the addition of water to the simple carbonyl group of formaldehyde. O-Alkylation of p-quinone methide to give the 4-methoxybenzyl carbocation and of formaldehyde to give a simple oxocarbenium ion results in very little change in the relative Marcus intrinsic barriers for the addition of solvent water to these electrophiles.  相似文献   
6.
[reaction: see text] There is substantial isomerization (kiso=0.32 x 10(-3) s(-1)) of 3-NO2C6H4(13)CH(Me)OS(18O)2Tos during solvolysis (ksolv=1.04 x 10(-3) s(-1)) in 50/50 trifluoroethanol/water, even though the estimated lifetime of the putative 1-(3-nitrophenyl)ethyl carbocation intermediate of solvolysis (ca. 10(-13) s(-1)) is too short to allow rearrangement that exchanges the positions of 16O and 18O at the sulfonate leaving group. This suggests that isomerization proceeds by a mechanism that avoids formation of the carbocation-anion pair intermediate.  相似文献   
7.
We report that the binding of phosphite dianion to orotidine 5'-monophosphate decarboxylase (OMPDC) results in an 80 000-fold increase in kcat/Km for decarboxylation of the truncated substrate, 1-(beta-d-erythrofuranosyl)orotic acid (EO), which lacks a 5'-phosphodianion moiety. The intrinsic binding energy (IBE) of phosphite dianion in the transition state is 7.8 kcal/mol, which represents a very large fraction of the 11.8 kcal/mol IBE of the phosphodianion group of the natural substrate orotidine 5'-monophosphate (OMP). The data give kcat = 160 +/- 70 s-1 for turnover of EO in the active site of OMPDC containing phosphite dianion, which is significantly larger than kcat = 15 s-1 for turnover of OMP. Despite the weaker binding of the individual EO and HPO32- "parts" (KmKd = 0.014 M2) than of OMP (Km = 1.6 x 10-6 M), once bound, OMPDC provides a slightly greater stabilization of the transition state for reaction of the parts than of the whole substrate. Thus, the covalent connection between the reacting portion of the substrate and the nonreacting phosphodianion group is not necessary for efficient catalysis. This implies that a major role of the phosphodianion group of OMP is to provide binding interactions that are used to drive an enzyme conformational change, resulting in formation of an active site environment optimized for transition state stabilization.  相似文献   
8.
We report second-order rate constants of kDO = 120 dm(3) mol(-1) s(-1) and kB = 6.4 x 10(-4) dm(3) mol(-1) s(-1) for exchange for deuterium of the first alpha-methylene proton of the 4-(aminomethyl)pyridine dication in D2O at 25 degree C and I= 1.0 (KCl). These data are consistent with a carbon acid pKa between 17 and 19 for ionization of this simple carbon acid and they show that the effect of an alpha-pyridinium substituent on carbon acidity is similar to that of an alpha-ester substituent.  相似文献   
9.
The L232A mutation in triosephosphate isomerase (TIM) from Trypanosoma brucei brucei results in a small 6-fold decrease in k(cat)/K(m) for the reversible enzyme-catalyzed isomerization of glyceraldehyde 3-phosphate to give dihydroxyacetone phosphate. In contrast, this mutation leads to a 17-fold increase in the second-order rate constant for the TIM-catalyzed proton transfer reaction of the truncated substrate piece [1-(13)C]glycolaldehyde ([1-(13)C]-GA) in D(2)O, a 25-fold increase in the third-order rate constant for the reaction of the substrate pieces GA and phosphite dianion (HPO(3)(2-)), and a 16-fold decrease in K(d) for binding of HPO(3)(2-) to the free enzyme. Most significantly, the mutation also results in an 11-fold decrease in the extent of activation of the enzyme toward turnover of GA by bound HPO(3)(2-). The data provide striking evidence that the L232A mutation leads to a ca. 1.7 kcal/mol stabilization of a catalytically active loop-closed form of TIM (E(c)) relative to an inactive open form (E(o)). We propose that this is due to the relief, in L232A mutant TIM, of unfavorable steric interactions between the bulky hydrophobic side chain of Leu-232 and the basic carboxylate side chain of Glu-167, the catalytic base, which destabilize E(c) relative to E(o).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号