首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   9篇
力学   1篇
物理学   1篇
  2023年   3篇
  2020年   2篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有11条查询结果,搜索用时 187 毫秒
1.
The tetramer destabilization of transthyretin into monomers and its fibrillation are phenomena leading to amyloid deposition. Heparan sulfate proteoglycan (HSPG) has been found in all amyloid deposits. A chromatographic approach was developed to compare binding parameters between wild‐type transthyretin (wtTTR) and an amyloidogenic transthyretin (sTTR). Results showed a greater affinity of sTTR for HSPG at pH 7.4 compared with wtTTR owing to the monomeric form of sTTR. Analysis of the thermodynamic parameters showed that van der Waals interactions were involved at the complex interface for both transthyretin forms. For sTTR, results from the plot representing the number of protons exchanged vs pH showed that the binding mechanism was pH‐dependent with a critical value at a pH 6.5. This observation was due to the protonation of a histidine residue as an imidazolium cation, which was not accessible when TTR was in its tetrameric structure. At pH >6.5, dehydration at the binding interface and several contacts between nonpolar groups of sTTR and HSPG were also coupled to binding for an optimal hydrogen‐bond network. At pH <6.5, the protonation of the His residue from sTTR monomer when pH decreased broke the hydrogen‐bond network, leading to its destabilization and thus producing slight conformational changes in the sTTR monomer structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   
3.
A simple Ni(cod)2 and carbene mediated strategy facilitates the efficient catalytic cross-coupling of methoxyarenes with a variety of organoboron reagents. Directing groups facilitate the activation of inert C−O bonds in under-utilized aryl methyl ethers enabling their adaptation for C−C cross-coupling reactions as less toxic surrogates to the ubiquitous haloarenes. The method reported enables C−C cross-coupling with readily available and economical arylboronic acid reagents, which is unprecedented, and compares well with other organoboron reagents with similarly high reactivity. Extension to directing group assisted chemo-selective C−O bond cleavage, and further application towards the synthesis of novel bifunctionalized biaryls is reported. Key to the success of this protocol is the use of directing groups proximal to the reaction center to facilitate the activation of the inert C−OMe bond.  相似文献   
4.
5.
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.  相似文献   
6.
We report the alkylation and arylation cross-coupling of aryl ethers based on C–O bond activation using a nickel catalyst and organoaluminum reagents. Ni(cod)2 in combination with 1,2-bis(dicyclohexylphosphino)ethane ligand in toluene solution at 130°C are the best conditions. The naphthyl ether or methoxy pyridine derivatives are suitable substrates for alkylation and arylation reaction with a wider scope of aluminum reagents in good yields. Computational analysis on the pyridine substrate is provided to help delineate the mechanistic pathway and demonstrate the important aspects of the cooperative interaction bimetallic catalysis. First, the coordination of AlMe3 to the O atom of pyridine is essential for C–O activation. Second, the β-H transfer from methoxy to pyridine could be discouraged through the use of bidentate phosphine as a ligand. Finally, excess AlMe3 reagent is critical for facilitating a reductive elimination process.  相似文献   
7.
Series of new oxaporphyrins were isolated from the reaction of furan-1,4-diol, pyrrole, and an aldehyde under Lindsey’s conditions, which gives easy access to ester group functionalized oxaporphyrins. The ester substituents can be readily hydrolyzed to terminal carboxylic acid in the presence of KOH. The Zn(II) oxaporphyrins have been synthesized from the reaction of free base with ZnCl2 and fully characterized by variable temperature NMR, 2D NMR, and single crystal X-ray diffraction studies.  相似文献   
8.
The unusual alcohol mediated formation of 4-oxo-2-aryl-4H-chromene-3-carboxylate (flavone-3-carboxylate) derivatives from 4-hydroxycoumarins and β-nitroalkenes in an alcoholic medium is described. The transformation occurs via the in situ formation of a Michael adduct, followed by the alkoxide ion mediated rearrangement of the intermediate. The effect of the different alcohol and nonalcohol media on the reaction was investigated.  相似文献   
9.
Echogenic liposomes (ELIP) are an excellent candidate for concurrent imaging and drug delivery applications. They combine the advantages of liposomes-biocompatibility and ability to encapsulate both hydrophobic and hydrophilic drugs-with strong reflections of ultrasound. The objective of this study is to perform a detailed in vitro acoustic characterization - including nonlinear scattering that has not been studied before - along with an investigation of the primary mechanism of echogenicity. Both components are critical for developing viable clinical applications of ELIP. Mannitol, a cryoprotectant, added during the preparation of ELIP is commonly believed to be critical in making them echogenic. Accordingly, here ELIP prepared with varying amount of mannitol concentration are investigated for their pressure dependent linear and non-linear scattered responses. The average diameter of these liposomes is measured to be 125-185 nm. But they have a broad size distribution including liposomes with diameters over a micro-meter as observed by TEM and AFM. These larger liposomes are critical for the overall echogenicity. Attenuation through liposomal solution is measured with four different transducers (central frequencies 2.25, 3.5, 5, 10 MHz). Measured attenuation increases linearly with liposome concentration indicating absence of acoustic interactions between liposomes. Due to the broad size distribution, the attenuation shows a flat response without a distinct peak in the range of frequencies (1-12 MHz) investigated. A 15-20 dB enhancement with 1.67 μg/ml of lipids is observed both for the scattered fundamental and the second harmonic responses at 3.5 MHz excitation frequency and 50-800 kPa amplitude. It demonstrates the efficacy of ELIP for fundamental as well as harmonic ultrasound imaging. The scattered response however does not show any distinct subharmonic peak for the acoustic excitation parameters studied. Small amount of mannitol proves critical for echogenicity. However, mannitol concentration above 100 mM shows no effect.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号