首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   14篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The reaction between Pd(N,N′)Cl2 [N,N′ ≡ 1-alkyl-2-(arylazo)imidazole (N,N′) and picolinic acid (picH) have been studied spectrophotometrically at λ = 463 nm in MeCN at 298 K. The product is [Pd(pic)2] which has been verified by the synthesis of the pure compound from Na2[PdCl4] and picH. The kinetics of the nucleophilic substitution reaction have been studied under pseudo-first-order conditions. The reaction proceeds in a two-step-consecutive manner (A → B → C); each step follows first order kinetics with respect to each complex and picH where the rate equations are: Rate 1 = {k′0 + k′2[picH]0} × [Pd(N,N′)Cl2] and Rate 2 = {k′′0 + k′′2[picH]0}[Pd(N,O)(monodentate N,N′)Cl2] such that the first step second order rate constant (k2) is greater than the second step second order rate constant (k′′2). External addition of Cl (as LiCl) suppresses the rate. Increase in π-acidity of the N,N′ ligand, increases the rate. The reaction has been studied at different temperatures and the activation parameters (ΔH° and ΔS°) were calculated from the Eyring plot.  相似文献   
2.
Summary The reactivities of - and -glycerophosphates towards MnO 4 in HClO4 medium have been examined. The reactions between glycerophosphates and MnO 4 are first order with respect to [glycerophosphate], [MnO 4 ] and [H+]. There is no evidence for cleavage of the C–O–P bond rather than the terminal –CH2OH group being oxidized to the respective phosphoglyceraldehyde.  相似文献   
3.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [(RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2NN-1-R′; where R = H(a)/ Me(b)/ Cl(c) and R′ = Et(1)/Bz(2)] with 2-Mercaptopyridine (2-SH-Py) in acetonitrile (MeCN) at 298 K, to form [Pd2(2-S-Py)4], has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support the nucleophilic association path. The reaction follows the rate law, Rate = {k 0 + k [2-SH-Py] 0 2 }[Pd(RaaiR′)Cl2]: first order in Pd(RaaiR′)Cl2 and second order in 2-SH-Py. The rate of the reaction follows the order: Pd(RaaiEt)Cl2 (1) < Pd(RaaiBz)Cl2 (2) and Pd(MeaaiR′)Cl2 (b) < Pd(HaaiR′)Cl2 (a) < Pd(ClaaiR′)Cl2 (c). External addition of Cl (LiCl) and HCl suppresses the rate (Rate ∝ 1/[Cl]0 & ∝1/[HCl]0). The reactions have been studied at different temperatures (293–308 K) and activation parameters (Δ H° and Δ S°) of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   
4.
5.
Interaction of adenine (A) with dichloro-[1-alkyl-2-(α-naphthylazo)imidazole] palladium(II) [Pd(α-NaiR)Cl2], 1 and dichloro-[1-alkyl-2-(β-naphthylazo)imidazole] palladium(II) [Pd(β-NaiR)Cl2], 2 {where R=Me (a), Et (b) or Bz (c)} in MeCN-water (50% v/v) medium to yield [{1-alkyl-2-(α-naphthylazo)imidazole}(adenine)]palladium(II) perchlorates (3a, 3b, 3c) and [{1-alkyl-2-(β-naphthylazo)imidazole}(adenine)]palladium(II) perchlorates (4a, 4b, 4c) was studied. The products were characterized by physico-chemical and spectroscopic methods. The reaction kinetics were second order overall, being first order in both the Pd(II) complex and adenine. The effect of adding chloride was consistent with rate-limiting dissociation of chloride from the complex. Thermodynamic parameters were determined from temperature variation experiments. The second-order rate constant k 2 corroborates with the experimental ΔH° values, while the negative values of ΔS° indicate that the reaction proceeds through an associative inner sphere mechanism.  相似文献   
6.
Nucleophilic substitutions of Pd(N,N)Cl2[(N,N = 1-methyl-2-(arylazo)imidazole (RaaiMe), p-RC6H4N=NC3H2NN-1-Me; 2-(arylazo)pyridine (Raap), p-RC6H4N=NC5H4N; 2-(arylazo)pyrimidine (Raapm), p-RC6H4N=NC4H3N2 where R = H (a), Me (b), Cl (c)] with 8-quinolinol (HQ) have been examined by spectrophotometry at 298 K in MeCN solution. The product, Pd(Q)2, has also been confirmed by independent synthesis from Na2[PdCl4] and HQ in EtOH. The kinetics of the reaction have been studied under pseudo-first-order conditions and the analyses support a nucleophilic association path. A single phase reaction has been observed and follows the rate law, rate = a + k [Pd(N,N)Cl2] [HQ]2. Thus, the reaction is first order in [Pd(N,N)Cl2] and second order in [HQ]. External addition of Cl(LiCl) suppresses the rate. The rate increases as follows: Pd(RaaiMe)Cl2 < Pd(Raap)Cl2 < Pd(Raapm)Cl2.  相似文献   
7.
8.

Background  

The anticancer properties of cisplatin and palladium(II) complexes stem from the ability of the cis-MCl2 fragment to bind to DNA bases. However, cisplatin also interacts with non-cancer cells, mainly through bonding molecules containing -SH groups, resulting in nephrotoxicity. This has aroused interest in the design of palladium(II) complexes of improved activity and lower toxicity. The reaction of DNA bases with palladium(II) complexes with chelating N,N/donors of the cis-MCl2 configuration constitutes a model system that may help explore the mechanism of cisplatin's anticancer activity. Heterocyclic compounds are found widely in nature and are essential to many biochemical processes. Amongst these naturally occurring compounds, the most thoroughly studied is that of pyrimidine. This was one of the factors that encouraged this study into the kinetics and mechanism of the interaction of 2-aminopyrimidine (2-NH2-Pym) with dichloro-{1-alkyl-2-(α-naphthylazo)imidazole}palladium(II) [Pd(α-NaiR)Cl2, 1] and dichloro-{1-alkyl-2-(β-naphthylazo)imidazole}palladium(II) [Pd(β-NaiR)Cl2, 2] complexes where the alkyl R = Me (a), Et (b), or Bz (c).  相似文献   
9.
The reaction of dichloro{1-methyl-2-(arylazo)imidazole}palladium(II), Pd(RaaiMe)Cl2 where RaaiMe = p-R–C6H4N=N–C3H2N2-1-Me; R = H(1), Me(2), Cl(3), with pyridine bases [RPY: R = H (a), 4-Me (b), 4-Cl (c), 2-Me (d), 2,6-Me2 (e), 2,4,6-Me3 (f)] has been studied spectrophotometrically in MeCN at 451 nm. The products (4) have been isolated and characterised as trans-Pd(RPy)2Cl2. The kinetics of the nucleophilic substitution has been examined under pseudo-first-order conditions at 298 K. A single phase reaction step has been observed for bases such as Hpy (a), 4-MePy (b) and 4-ClPy (c) and follows the rate law: rate = (a + k[RPy]2[Pd(RaaiMe)Cl2]). The bases 2-MePy (d), 2,6-Me2Py (e) and 2,4,6-Me3Py (f) exhibits a bi-phasic reaction and follows the rate laws: rate–1 = (a + k[RPy][Pd(RaaiMe)Cl2]) and rate–2 = (a + k[RPy][Pd(RaaiMe)-Cl2]), where k is the third-order rate constant; k is the second-order first phase rate constant, k is the second-order second phase rate constant and a/a/a correspond to the solvent dependent constant of the respective reaction path. The rate data supports a nucleophilic association path. External addition of Cl (LiCl) suppresses the rate, which follows the order: k/k/k (3) > k/k,k (1) > k/k,k (2). The k values are linearly related to the Hammett constants. The 2-substituted pyridines (d–f) remarkably reduce the rate and show a bi-phasic reaction behaviour as compared with 4-Rpy (a–c). This is attributed to the steric effect that destabilises the transition state. The rate decreases with increasing steric crowding at the ortho-position and follows the order: (d) > (f) > (e). The 4-substituted pyridines control the rate via an inductive effect and follow the order: (b) > (a) > (c).  相似文献   
10.
The kinetics of basic hydrolysis of tris(1,10‐phenanthroline)iron(II) has been carried out in aqueous, N‐cetyl‐N,N,N‐trimethyl ammonium bromide (CTAB) micellar, and CTAB reverse micellar media by UV–visible spectroscopy system. The reaction follows the overall second‐order kinetics; first order in each Fe(II) complex and the base (?OH). CTAB micelles catalyze the reaction rate through the adsorption of the Fe(II) complex and the hydroxyl ions on the micellar surface. In the reverse micellar medium, interesting physicochemical features are observed. Being ionic nature of reactants, both the reactants prefer to stay and react inside the water pool in place of the hydrophobic environment. The rate increases with w, that is, the size of the water pool, attains a maximum value at w = 8.33, and then decreases. But the rate increases as the concentration of surfactant increases at fixed w values. For a better explanation of the kinetic data, the activation parameters, standard enthalpy of activation (Δ?H°), standard entropy of activation (Δ?S°), and energy of activation (Ea) were determined. All kinetic data corroborate the proposed mechanism. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 579–589, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号