首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
化学   10篇
数学   1篇
物理学   9篇
  2024年   1篇
  2019年   3篇
  2017年   1篇
  2011年   3篇
  2008年   1篇
  2006年   2篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1996年   3篇
  1994年   1篇
排序方式: 共有20条查询结果,搜索用时 46 毫秒
1.
This study examines the difficulties college students experience when creating and interpreting graphs in which speed is one of the variables. Nineteen students, all preservice elementary or middle school teachers, completed an upper‐level course exploring algebraic concepts. Although all of these preservice teachers had previously completed several mathematics courses, including calculus, they demonstrated widespread misconceptions about the variable speed. This study identifies four cognitive obstacles held by the students, provides excerpts of their graphical constructions and verbal interpretations, and discusses potential causes for the confusion. In particular, misconceptions arose when students interpreted the behavior and nature of speed within a graphical context, as well as in situations where they were required to construct a graph involving speed as a variable. The study concludes by offering implications for the teaching and learning of speed and its interpretation within a graphical setting.  相似文献   
2.
Motivated by the necessity to understand the pyrolysis of alkylated amines, unimolecular decomposition of acetamide is investigated herein as a model compound. Standard heats of formation, entropies, and heat capacities, are calculated for all products and transition structures using several accurate theoretical levels. The potential energy surface is mapped out for all possible channels encountered in the pyrolysis of acetamide. The formation of acetamedic acid and 1-aminoethenol and their subsequent decomposition pathways are found to afford the two most energetically favored pathways. However, RRKM analysis shows that the fate of acetamedic acid and 1-aminoethenol at all temperatures and pressures is to reisomerize to the parent acetamide. 1-Aminoethenol, in particular, is predicted to be a long-lived species enabling its participation in bimolecular reactions that lead to the formation of the major experimental products. Results presented herein reflect the importance of bimolecular reactions involving acetamide and 1-aminoethenol in building a robust model for the pyrolysis of N-alkylated amides.  相似文献   
3.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
Structural Chemistry - The reaction of the anti-Criegee intermediate (anti-CI) of β-pinene with prevalent atmospheric species has been investigated using quantum-chemical calculations. The...  相似文献   
5.
The mechanism for the deamination reaction of cytosine with H(2)O and OH(-) to produce uracil was investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels and for anions at the B3LYP/6-31+G(d) level. Single-point energies were also determined at B3LYP/6-31+G(d), MP2/GTMP2Large, and G3MP2 levels of theory. Thermodynamic properties (DeltaE, DeltaH, and DeltaG), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway that was investigated. Intrinsic reaction coordinate analysis was performed to characterize the transition states on the potential energy surface. Two pathways for deamination with H(2)O were found, a five-step mechanism (pathway A) and a two-step mechanism (pathway B). The activation energy for the rate-determining steps, the formation of the tetrahedral intermediate for pathway A and the formation of the uracil tautomer for pathway B, are 221.3 and 260.3 kJ/mol, respectively, at the G3MP2 level of theory. The deamination reaction by either pathway is therefore unlikely because of the high barriers that are involved. Two pathways for deamination with OH(-) were also found, and both of them are five-step mechanisms. Pathways C and D produce an initial tetrahedral intermediate by adding H(2)O to deprotonated cytosine which then undergoes three conformational changes. The final intermediate dissociates to product via a 1-3 proton shift. Deamination with OH(-), through pathway C, resulted in the lowest activation energy, 148.0 kJ/mol, at the G3MP2 level of theory.  相似文献   
6.
7.
This paper describes a rapid technique for reconstruction of the internal area function of a duct using blockage-induced eigenvalue shifts determined from eigenfrequencies measured under two sets of duct termination boundary conditions. A single broad band maximum length sequence (MLS) measurement of short duration is utilized to obtain the transfer function of the duct, which in turn can be utilized to determine its eigenvalue shifts and subsequently its internal area function using an inverse perturbation technique. The reconstruction results display the same order of accuracy as those obtained previously using swept sine measurements of extended duration. An expression for the determination of the area function is presented utilizing resonant frequency information alone, thus rendering duct length determination unnecessary. A computational routine further simplifies the process such that the accuracy of the technique could be ascertained for a range of configurations including longer ducts and ducts that initially have nonuniform internal cross section over their length. Development of a relationship between obstacle length and wavelength of the lowest eigenfrequency required for successful reconstruction is also described. This is an important result for longer ducts where measurement of lower eigenfrequencies may present problems using standard measurement equipment.  相似文献   
8.
Mechanisms for the deamination reaction of cytosine with H 2O/OH (-) and 2H 2O/OH (-) to produce uracil were investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at MP2 and B3LYP using the 6-31G(d) basis set and at B3LYP/6-31+G(d) levels of theory. Single point energies were also determined at MP2/G3MP2Large and G3MP2 levels of theory. Thermodynamic properties (Delta E, Delta H, and Delta G), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway investigated. Intrinsic reaction coordinate (IRC) analysis was performed to characterize the transition states on the potential energy surface. Seven pathways for the deamination reaction were found. All pathways produce an initial tetrahedral intermediate followed by several conformational changes. The final intermediate for all pathways dissociates to product via a 1-3 proton shift. The activation energy for the rate-determining step, the formation of the tetrahedral intermediate for pathway D, the only pathway that can lead to uracil, is 115.3 kJ mol (-1) at the G3MP2 level of theory, in excellent agreement with the experimental value (117 +/- 4 kJ mol (-1)).  相似文献   
9.
A detailed computational study of the deamination reaction of melamine by OH, n H2O/OH, n H2O (where n = 1, 2, 3), and protonated melamine with H2O, has been carried out using density functional theory and ab initio calculations. All structures were optimized at M06/6‐31G(d) level of theory, as well as with the B3LYP functional with each of the basis sets: 6‐31G(d), 6‐31 + G(d), 6‐31G(2df,p), and 6‐311++G(3df,3pd). B3LYP, M06, and ω B97XD calculations with 6‐31 + G(d,p) have also been performed. All structures were optimized at B3LYP/6‐31 + G(d,p) level of theory for deamination simulations in an aqueous medium, using both the polarizable continuum solvation model and the solvation model based on solute electron density. Composite method calculations have been conducted at G4MP2 and CBS‐QB3. Fifteen different mechanistic pathways were explored. Most pathways consisted of two key steps: formation of a tetrahedral intermediate and in the final step, an intermediate that dissociates to products via a 1,3‐proton shift. The lowest overall activation energy, 111 kJ mol?1 at G4MP2, was obtained for the deamination of melamine with 3H2O/OH?.  相似文献   
10.

The extraction behavior of Nd(III) and Eu(III) with 0.05 mol dm−3 furosemide in benzyl alcohol as single acidic extractant and then with equimolar (0.05 mol dm−3) synergic mixture of furosemide as acidic extractant and tribenzylamine as neutral donor in benzyl alcohol has been studied from aqueous solutions of pH 1 to 6. The effect of various parameters and of various cations and anions on the extraction of these metal ions was investigated. The composition of the extracted adducts was determined by slope analysis method that came out to be [(M(FS)2)+ (CH3COO)] and [M(FS)3·3TBA] where M = Nd(III) and Eu(III).

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号