首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
化学   61篇
数学   12篇
物理学   14篇
  2024年   1篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
2.
A vinyl bis-sulfone Michael type approach towards heteroatom vinylation was applied on nitrogen derivatives. Cyclic thionocarbamates--mainly 1,3-oxazolidine-2-thiones--were converted into their N-vinyl counterparts; the procedure proved particularly efficient in the case of carbohydrate-derived complex structures.  相似文献   
3.
Dimeric poly(ethylene oxide) surfactants (or nonionic gemini surfactants) with the structure (Cn-2H2n-3CHCH2O(CH2CH2O)mH)2(CH2)6 (or GemnEm), where n is the alkyl length and m is the average number of ethylene oxides per head group, were synthesized. Surfactants were synthesized with alkyl chain lengths n = 12, 14, and 20 and m = 5, 10, 15, 20, and 30. Water solubilities and cloud temperatures at 1 wt% were determined by measuring turbidity as a function of temperature. Cloud temperatures increase with m and decrease with n, as observed for conventional surfactants. For large m the cloud temperatures were all above 100 degrees C. Surfactants with small m (i.e., n = 12, 14, m = 5 and n = 20, m = 10) were insoluble at room temperature, forming two-phase mixtures. Critical micelle concentrations (CMCs) were measured using a pyrene fluorescence method and are all in the range of 10(-7) to 10(-6) M, with the lowest values from the surfactants with large n and small m. CMCs of mixtures with both anionic and nonionic conventional (monomeric) surfactants were well described by an ideal mixing model.  相似文献   
4.
(1-Amino-1H-benzimidazol-2-yl)methanol 1 with thionyl chloride at reflux afforded 3-chlorobenzimidazo[1,2-c][1,2,3]thiadiazole 4, which reacted with various nucleophiles to give different products depending on the nature of the solvent. The structures of 4 and di(benzimidazo[1,2-c][1,2,3]thiadiazol-3-yl)sulfide 8 were confirmed by single-crystal X-ray analysis.  相似文献   
5.
Condensation of 1-substituted 1,2,3,9a-tetrahydro-9H-imidazo[1,2-a]indol-2-ones with 5-nitrosalicylaldehyde afforded 1′-[(N-monosubstituted carbamoyl)methyl]indoline nitrospirobenzopyrans. Treatment of the latter with strong base led to the formation of a mixture of cis/trans-5a,13-methano-1,3-benzoxazepino[3,2-a]indoles. Results of semiempirical calculations gave evidence that such a transformation of nitrospirobenzopyrans to bicyclic indole derivatives could proceed via a single transition state, where the negatively charged carbon atom attacks the vinylic double bond of the spiropyran system.  相似文献   
6.
Heating of 1′‐(N‐substituted carbamoyl)methylspiro[2H‐1‐benzopyran‐2,2′‐[2H]indoles] with potassium hydroxide in ethanol yields diastereomeric 5a,13‐methano‐6H‐1,3‐benzoxazepino[3,2‐a]indole‐12‐carbox‐amides. Reduction of the latter with sodium borohydride affords 1,2,3,9a‐tetrahydro‐2‐hydroxyaryl‐9H‐pyrrolo[ 1,2‐a] indole‐3 ‐carboxamides.  相似文献   
7.
The synthesis of a new halogenide containing hexyltriethylene glycol chain functionalized with biotin is reported. The general possibility of this linker to use as the building block for biotinylated compounds syntheses is demonstrated. Two biotinylated esters with different properties for useful surface modification and as fluorescence probes for proteins marking were synthesized. The properties of mentioned compounds were investigated by using surface plazmon resonance ellypsometry and fluorescence spectroscopy.  相似文献   
8.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   
9.
10.
Developing of a simple method for the fabrication of superparamagnetic iron oxide nanoparticles (Nps) is still a challenge for materials scientists. This work reveals a way to fabricate especially stable ferrofluids from spherical Nps of magnetite using the co-precipitation method, for which a new (diglycolic acid) stabilizer was applied. The Nps of the average size of ~7.4–16.5 nm were characterized by means of high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), selective area electron diffraction (SAED), Raman, FTIR and Mössbauer spectroscopy. The stabilization effect of the diglycolic acid for the growth of superparamagnetic Nps growth was discussed on the basis of experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号