首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
化学   27篇
晶体学   1篇
数学   12篇
物理学   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1993年   1篇
  1968年   1篇
  1967年   1篇
  1938年   1篇
  1930年   1篇
排序方式: 共有45条查询结果,搜索用时 234 毫秒
1.
Pyrolysis of hardware components wastes consisting mainly in computers and television components was performed under nitrogen. The degradation products were separated in three fractions, solid, liquid and gaseous. Analyses of the three phases were carried out using gas chromatography (GC), mass spectrometry (MS), thermal analysis and infrared spectroscopy. The energetic content of the gas phase and the economic value of the liquid phase were also determined. The gas fraction produced was rich in light hydrocarbons and hydrogen. Consequently, its calorific value was high and widely sufficient to make the pyrolysis process self-sustained. The main products of the liquid phase were phenol and isopropylphenol (ca. 50–80 wt.%). The presence of Br-based compounds, deriving from the flame retardant employed in hardware components, were also detected. A controlled combustion of the solid phase permitted to obtain the glass fibres unaltered, which can be recycled.  相似文献   
2.
The reaction of C2H6with lattice oxygen, O2- (in the absence of gaseous oxygen), or “adsorbedℍ oxygen (in the presence of gaseous oxygen) over NiMoO4 catalysts has been performed and compared to C3H8 activation. The results obtained indicate that adsorbed oxygen exhibits a higher reactivity to C2H6, while lattice oxygen is more reactive relative to C3H8. Kinetic studies of these two reactions in presence of molecular oxygen have indeed shown that the ethane oxidative dehydrogenation (ODH) is dependent on the oxygen partial pressure, whilst on the contrary propane ODH is not. In order to confirm the presence of “adsorbed” oxygen for ethane activation, ODH tests have been performed with N2O. On increasing temperature, the O- adsorbed species enhances the mild oxidation of ethane. The activation energy of ethane consumption EC2H6, relative to propane (EC3H8 = 133 kJ/mol) is 145 kJ/mol. A possible mechanism is proposed for the oxidative dehydrogenation of ethane. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
SiO2 and Al2O3 supported Ni catalysts were synthesized in the form of xerogels: the SiO2 based materials were prepared starting from Ni propionate or glycolate salts and reacting them with tetraethoxysilane (TEOS) in propionic acid, Si(ethylene glycolate) or sodium silicate. The Al2O3 supported catalysts were prepared similarly from Ni propionate salts with Al iso-propoxide salts. Narrow metal particles and strong metal support interactions are observed in the sol-gel catalysts. The metal dispersion was higher for Al2O3 based materials than the SiO2 ones and it deeply depends on the Ni precursor for the silica supported Ni. Wet impregnated oxides with similar Ni loading have higher metal surface area than those from sol-gel processing. The influence of surface differences on the catalytic activity of the materials was studied following the CH4 and CO2 reaction in dry reforming conditions by pulse reaction tests.  相似文献   
4.
A study on the synthesis of La1−xAgxMnO3+δ (x = 0, 0.2) using a microwave process (MWhyd) has been carried out by comparing the heating time and reaction temperature with the same factor under conventional thermal process (CHhyd). Experiments have been conducted using the hydrothermal method at medium pressure (T = 200 °C, P = 20 atm) followed by a thermal treatment of the precursor at 700 °C (10 h).Structural and physico-chemical properties of the catalysts were investigated using X-ray diffraction (XRD), BET sorption, temperature-programmed reduction or desorption, mass spectrometry (TPR-MS and TPD-MS), and X-ray photoelectron spectroscopy (XPS). While CHhyd and MWhyd powder catalysts exhibited the same XRD patterns indexed as pure perovskite structure, their surface physico-chemical properties were found to be strongly influenced by the preparation method. The effect of the nature of oxygen species, their amount and mobility, evidenced by temperature programmed experiments, on the catalytic properties in methane combustion in the presence and in the absence of hydrogen sulphide has been studied. MWhyd-La0.8Ag0.2MnO3+δ catalysts were found to exhibit a much better performance in methane combustion together with higher resistance to sulphur poisoning than CHhyd catalysts.  相似文献   
5.
We characterize Banach lattices on which each positive operators is b-weakly compact and we derive some characterizations of KB-spaces.  相似文献   
6.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   
7.
8.
Powder iron has been bombarded by a 5 keV Kr+ ions in a vacuum better than 10-7 torr and under few 10-6 torr ultra pure oxygen partial pressure. The optical spectra of the sputtered particles were recorded between 340.0 nm and 410.0 nm. These spectra exhibit discrete lines, which are attributed to neutral excited atoms of iron. Two iron oxides, namely hematite (Fe2O3)_{3}) and magnetite (Fe3O4)_{4}), in powder form, were studied under the same experimental conditions and identical lines were observed in the obtained spectra. The absolute intensities of the spectral lines in all spectra were measured and the differences in the recorded yield photons were discussed in term of electron-transfer processes between the excited sputtered atom and the bombarded surface. In accordance with the proposed interpretation, we suggest values for the energy gaps and electronic affinities for the studied oxides and for the oxide layer that might be formed by the adsorption of oxygen atoms.  相似文献   
9.
Nanostructured copper-chromium oxides were prepared by the sol–gel process (SG) and were characterised by elemental analysis, thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and by their activity in methane combustion. A comparative study was made with copper chromites commercial catalysts. The as-synthesised copper chromites sample exhibited higher specific surface area (248 m2 g−1) with respect to commercial solids (42 m2 g−1). The surface quantitative analysis evidenced a Cr6+ enrichment for the SG catalyst (Cr6+/Cr3+=0.56) with respect to commercial sample (0.39), while the ratio of copper species Cu2+/(Cu° + Cu+) was the same in both solids. Catalytic activity of SG solids in methane combustion was found to be comparable to that of Pt/Al2O3 and superior to that of commercial copper chromites tested under the same conditions.  相似文献   
10.
Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine and 7-hydroxynoracronycine, and a known acridone, atalaphyllidine. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号