首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   5篇
数学   1篇
物理学   10篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2000年   1篇
  1996年   3篇
  1994年   2篇
  1992年   3篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Europium (Eu+) ions were confined in a Paul trap and detected by non-destructive method. Storage time of Eu+ ions achieved in vacuum was improved by orders of magnitude employing buffer gas cooling. The experimentally detected signal was fitted to the ion response signal and the total number of ions trapped was estimated. It is found that the peak signal amplitude as well as the product of FWHM and the peak signal amplitude is proportional to the total number of trapped ions. The trapped ion secular frequency was swept at different rates and its effect on the absorption line profile was studied both experimentally and theoretically.  相似文献   
2.
3.
The influence of thermal fluctuations on the dynamics of interfacial electron transfer in sensitized TiO2-anatase semiconductors is investigated by combining ab initio DFT molecular dynamics simulations and quantum dynamics propagation of transient electronic excitations. It is shown that thermal nuclear fluctuations speed up the underlying interfacial electron transfer dynamics by introducing nonadiabatic transitions between electron acceptor states, localized in the vicinity of the photoexcited adsorbate, and delocalized states extended throughout the semiconductor material, creating additional relaxation pathways for carrier diffusion. Furthermore, it is shown that room-temperature thermal fluctuations reduce the anisotropic character of charge diffusion along different directions in the anatase crystal and make similar the rates for electron injection from adsorbate states of different character. The reported results are particularly relevant to the understanding of temperature effects on surface charge separation mechanisms in molecular-based photo-optic devices.  相似文献   
4.
After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfate)β-1→3GalNAc(4-Sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.  相似文献   
5.
In this study we deal with the one-dimensional cutting of metallic structural tubes used in the manufacturing of agricultural light aircrafts. The problem is modeled by mixed integer linear formulations aiming to minimize material trim losses and considering the possibility of generating remainders (leftovers) with enough size to reuse. To validate the application of the models in practice, we carried out experiments with real data of order lists from Ipanema, an agricultural airplane produced by a Brazilian aeronautical company. The models were solved using a modeling language and an optimization software. The computational results show that the models are useful in supporting decisions in this cutting process.  相似文献   
6.
7.
8.
Three sharp absorption features in the energy range 2.36–2.55 eV have been detected in the transmission spectrum of Co-diffused ZnSe, and a number of luminescence transitions originating from the lowest of these states at 2.361 eV have been observed. Photoluminescence excitation spectra prove that these are high energy excited states of the Co2+Zn impurity, a conclusion confirmed by comparison of measured and predicted luminescence energies. This represents the first identification of luminescence branching from a higher excited state of a transition metal ion in any semiconductor. The sharp, weakly phonon-coupled transitions involve either intra-impurity excitation or transitions from the impurity to localised states split off from a minimum in the conduction band. The implications of these observations for the mechanism of host-impurity energy transfer and for the nature of the excited state wavefunctions are discussed.  相似文献   
9.
Functionalization of semiconductor nanocrystals can be achieved by anchoring organic ligands to the surface dangling bonds. The resulting surface complexes often introduce electronic states in the semiconductor band gap. These interband states sensitize the host material for photoabsorption at frequencies characteristic of the molecular adsorbates, leading to the well-known process of photoexcitation and subsequent femtosecond interfacial electron transfer. This paper investigates the relaxation dynamics of hole states, energetically localized deep in the semiconductor band gap, after the ultrafast electron-hole pair separation due to interfacial electron transfer. Mixed quantum-classical methods, based on mean-field nuclear dynamics approximated by ab initio density functional theory molecular dynamics simulations, reveal superexchange hole tunneling between adjacent adsorbate molecules in a model study of functionalized TiO2-anatase nanostructures. It is shown that electronic coherences can persist for hundreds of picoseconds under cryogenic and vacuum conditions, despite the partial intrinsic decoherence induced by thermal ionic motion, providing results of broad theoretical and experimental interest.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号