首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
ABSTRACT

Hydrogen bonding is an efficient alternative to covalent bonding as a way to stabilise liquid crystallinity, by yielding symmetric and non-symmetric complexes with increased molecular anisotropy. In designing new hydrogen-bonded liquid crystals, HBLCs, it is crucial to account for the competing hydrogen bonds that can lead to different supramolecular species coexisting in a temperature-dependent equilibrium. Thus, as part of a systematic development of this area, in the present work we study with detail the relationships between the phase behaviour and hydrogen bonding in a series of 4-n-alkoxybenzoic acids, nOBAs, which are widely used as components in HBLCs. Five acids with alkyl chain lengths of n = 1, 4, 5, 7 and 8 have been investigated using Fourier transform infrared spectroscopy, FTIR, in a broad range of temperatures under two different experimental configurations: sandwiched between potassium bromide, KBr, windows and dispersed in KBr discs. The nematic phase is correlated with the amounts of closed dimers between acid molecules, through the formation of strong hydrogen bonds. Moreover, high concentrations of open dimers are found in samples sandwiched between KBr slides, which are linked to the appearance of smectic-like aggregates that perturb the local order of the nematic phase. The results are interpreted in terms of the ability of the 4-alkoxybenzoic acids to align due to surface interactions, which are less acute in samples dispersed in the discs. These effects must be taken into account in order to correctly interpret the information about the supramolecular species present in the samples, and thus to better understand the relationships between hydrogen bond strength and mesomorphism in HBLCs.  相似文献   
2.
Journal of Solid State Electrochemistry - Organometallic halide perovskites have been arisen as a class of multi-purpose materials with exciting applications in optoelectronic devices such as solar...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号