首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
化学   24篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
Molecular imprinted solid-phase extraction (MISPE) is a well known technique for the selective extraction and pre-concentration of analytes, are present at low levels in chemically complex materials. Herein, water-soluble, molecularly imprinted polymers (MIP) were prepared for solid-phase extraction of pseudoephedrine hydrochloride (PSE), which was monitored at 256 nm by the UV spectroscopy. MISPE conditions were optimized to allow the selective and determination of PSE in aqueous samples and composite materials, such as biological fluids and human urine. MIP was prepared by precipitation polymerization method, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent in either acetonitrile or chloroform. The results suggest that the obtained MISPE exhibits high affinity for PSE, and the imprinted polymer demonstrates much higher efficiency than a non-imprinted polymer (NIP). The imprinting-induced extraction was confirmed by the determination of recovery values for NIP (4%) and MIP (80%) polymers, respectively. The binding capacity of the MIP for PSE was found of 47.6 mg g−1.  相似文献   
2.
In this paper, a highly selective molecularly imprinted polymer (MIP) for tramadol hydrochloride, a drug used to treat moderate to severe pain, was prepared and its use as solid-phase extraction (SPE) sorbent was demonstrated. The molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC) was developed for selective extraction and determination of tramadol in human plasma and urine. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of tramadol sample (50 μg L−1) at pH 7.5, washing using 1 mL acetone and elution with 3 × 1 mL of 10% (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. Results from the HPLC analyses showed that the calibration curve of tramadol (using MIP from human plasma and urine) is linear in the ranges of 6–100 and 3–120 μg L−1 with good precisions (1.9% and 2.9% for 5.0 μg L−1), respectively. The recoveries for plasma and urine samples were higher than 81%.   相似文献   
3.
A new functionalized nanoporous silica gel with dipyridyl group (DPNSG) was synthesized. Then, the potentiometric response of the copper(II) ion was investigated at a carbon paste electrode chemically modified with this newly designed functionalized nanoporous silica gel. The electrodes with DPNSG proportions of 15.0% (w/w) demonstrated very stable potentials. Calibration plots with Nernstian slopes for Cu2+ were observed, 28.4 (±1.0) mV decade−1, over a wide linear concentration range (1.0 × 10−7 to 1.0 × 10−2 M). The electrode exhibited a detection limit of 8.0 × 10−8 M. Moreover, the selectivity coefficients measured by the match potential method in acetate buffer, pH 5.5, were investigated. The electrode presented a response time of ∼50 s, high performance, high sensitivity in a wide range of cation activities and good long-term stability (more than 9 months). The method was satisfactory and was used to determine the copper ion concentration in waste waters, contaminated by this metal.  相似文献   
4.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
5.
In this work, poly(methacrylic acid) (PMAA)-based molecularly imprinted polymer nanoparticles (MIP NPs) using isosorbide dinitrate (ISDN) as a template were prepared via a precipitation polymerization. The morphology and performance of the samples were investigated by varying different concentrations of azobisisobutyronitrile (AIBN) as an initiator. The MIP NP sample characterization as a function of the initiator concentration was evaluated utilizing Fourier transform infrared (FTIR) spectroscopy and field emission-scanning electron microscopy (FE-SEM) analyses. Regarding the washed MIP NP samples, the FTIR spectra results showed two main characteristic peaks located at 3339 and 1734 cm?1 wavenumbers corresponding to hydroxyl (–OH) and carbonyl (–C=O) groups, respectively. The intensity of these main peaks for the washed MIP NPs was higher than that of those for unwashed MIP NPs in which the active sites were appropriately formed between the polymer and template. These observations were occurred at the maximum amount of AIBN concentration (3 mmol). Moreover, the FE-SEM micrograph images exhibited an average diameter of approximately 40 nm for the MIP NP sample prepared with a low concentration of the initiator (0.5% of polymerizable double bonds). Furthermore, another two key factors for the MIP NPs such as binding capacity, and surface area using Barrett–Joyner–Halenda (BJH) method were studied to apply them for drug delivery systems potentially. On the other hand, the release of ISDN from MIP NP was considered through phosphate buffer saline (PBS, pH 7.4) at 37 °C for 5 days. The results showed higher ability of the sample compared with the non-imprinted polymer (NIP) ones to control the drug release, and kinetic trend of the drug absorption within the MIP NPs followed the pseudo-first model. Finally, the obtained outcomes showed that the low amounts of the initiator concentration have an indispensable role on the physicochemical properties of the synthesized MIP NPs.  相似文献   
6.
Russian Journal of Applied Chemistry - The poly(vinyl butyral) (PVB) is a resin that is used in areas where strong adhesion, optical transparency, multi-surface adhesion, hardness and flexibility...  相似文献   
7.
Hanoon  H. D.  Kowsari  E.  Abdouss  M.  Zandi  H.  Ghasemi  M. H. 《Research on Chemical Intermediates》2017,43(3):1751-1766
Research on Chemical Intermediates - This article reports an efficient method with a simple workup for the facile synthesis of benzimidazole derivatives using an acidic ionic liquid covalently...  相似文献   
8.
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L?1 to 300 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L?1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L?1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples. Figure
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples  相似文献   
9.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L−1 to 300 μg L−1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L−1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L−1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples

  相似文献   
10.
Citric acid (CA)–modified hydrogels from corn starch and chitosan were synthesized using a semidry condition. This strategy has great benefits of friendly environment because of the absence of organic solvents and compatible with the industrial process. The hydrogel blends were prepared with starch/chitosan ratios of 75/25, 50/50, and 25/75. The thermal stability, morphology, water absorption, weight loss in water, and methylene blue absorption were determined. Multi‐carboxyl structure of CA could result in a chemical cross‐linking reaction between starch, chitosan, and CA. The cross‐linking reaction between free hydroxyl groups of starch, amino groups of chitosan, and carboxyl groups of CA has been confirmed by attenuated total reflectance infrared (ATR‐IR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) analysis. The water absorption properties of CA‐modified hydrogel blends were increased significantly compared with the native starch and chitosan. Moreover, the hydrogel blends modified with CA showed good water resistance and gel content. The morphology study confirmed the complete chemical cross‐linking and porous structure of hydrogel blends. The hydrogel blend with the starch/chitosan ratio of 50/50 presented powerful absorption of methylene blue as well as chemical cross‐linking reaction and dense structure. In sum, the hydrogel blend comprising 50% starch and 50% chitosan has the potential to be applied for water maintaining at large areas, for example, in agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号