首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   3篇
化学   3篇
  2023年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
郝金辉  施伟东 《催化学报》2018,39(7):1157-1166
近年来,全球二氧化碳排放量逐年增加, 对人们赖以生存的生态环境已造成严重威胁, 因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注. 与目前已开发的转化技术(如热催化和光催化等)相比, 电催化二氧化碳转化技术具有稳定的效率?可控的选择性?简单的反应单元和巨大的工业应用潜力, 是一种更为理想的转化技术之一. 从反应动力学来看, 目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度. 另一方面, 电催化二氧化碳转化包含多个质子和电子的耦合过程, 反应过程包含多种路径, 反应产物往往是混合物. 在此背景下, 如何发展高催化效率和高选择性电催化剂成为目前研究的焦点. 在众多的电催化剂中, 贵金属及其合金展现出较高的电催化二氧化碳还原活性, 但储量小的缺点限制了其大规模的工业应用. 铜基材料可以把二氧化碳转化为附加值更高的产品. 然而, 铜基材料仍难以克服选择性差?失活严重和效率低等缺点. 作为一种更廉价的材料, 碳基催化剂具有价廉?比表面积大?导电性好?化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究. 然而, 单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低, 导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低. 因此, 开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力. 过渡金属价电子在d轨道, 而d轨道邻近费米能级, d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化, 进而展现出多种催化活性. 电催化二氧化碳还原是一个多电子和质子耦合过程, 催化剂的本征活性由其表面电子结构决定. 在此背景下, 过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂. 对于电催化二氧化碳还原, 不同中间体的标度关系是制约反应总效率的关键因素. N?rskov等研究发现, MoS2, MoSe2和Ni掺杂 MoS2催化剂上存在不同种类的活性位点. 不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立, 从而有效打断中间体的标度关系. 2014,Salehi-Khojin等成功把MoS2应用在高效电催化二氧化碳还原中. 边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性. 其它研究工作者通过引入掺杂物质, 进一步提高了MoS2的电催化二氧化碳还原性能. Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性, 然而目前铁基催化剂的研究相对较少. Co基材料也可用于电催化二氧化碳转化.2016年, Xie等首次制备无机Co基材料用于电催化二氧化碳还原. 部分氧化的钴可以促进速控步骤反应进程, 进而降低整体反应的过电势. 基于此, 制备了超薄的Co3O4片层, 发现价电子轨道中心更靠近费米能级时, 电极材料展现出更高的催化活性. 进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障. 此外, Ni基材料也被证明具有高的催化二氧化碳转化活性. 目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向, 并且联系实验证明了方法的可行性. 受到这些工作的启发, 未来可将有巨大潜力的过渡金属基化合物化合物, 例如过渡金属氮化物?过渡金属磷化物?过渡金属碳化物和过渡金属硼化物等, 作为电催化剂研究其二氧化碳还原催化性能. 另外, 就目前的研究来看, 将二氧化碳有效地还原到特定的产物仍存在巨大的挑战. 如何优化过渡金属(Mo, Fe, Co和Ni)基催化剂价层d轨道结构, 促进反应中间体吸附过程, 将是解决催化活性和选择性这一科学问题的关键.  相似文献   
2.
近年来,全球二氧化碳排放量逐年增加,对人们赖以生存的生态环境已造成严重威胁,因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注.与目前已开发的转化技术(如热催化和光催化等)相比,电催化二氧化碳转化技术具有稳定的效率、可控的选择性、简单的反应单元和巨大的工业应用潜力,是一种更为理想的转化技术之一.从反应动力学来看,目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度.另一方面,电催化二氧化碳转化包含多个质子和电子的耦合过程,反应过程包含多种路径,反应产物往往是混合物.在此背景下,如何发展高催化效率和高选择性电催化剂成为目前研究的焦点.在众多的电催化剂中,贵金属及其合金展现出较高的电催化二氧化碳还原活性,但储量小的缺点限制了其大规模的工业应用.铜基材料可以把二氧化碳转化为附加值更高的产品.然而,铜基材料仍难以克服选择性差、失活严重和效率低等缺点.作为一种更廉价的材料,碳基催化剂具有价廉、比表面积大、导电性好、化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究.然而,单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低,导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低.因此,开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力.过渡金属价电子在d轨道,而d轨道邻近费米能级,d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化,进而展现出多种催化活性.电催化二氧化碳还原是一个多电子和质子耦合过程,催化剂的本征活性由其表面电子结构决定.在此背景下,过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂.对于电催化二氧化碳还原,不同中间体的标度关系是制约反应总效率的关键因素.N?rskov等研究发现,MoS_2,MoSe_2和Ni掺杂MoS_2催化剂上存在不同种类的活性位点.不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立,从而有效打断中间体的标度关系.2014年,Salehi-Khojin等成功把MoS_2应用在高效电催化二氧化碳还原中.边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性.其它研究工作者通过引入掺杂物质,进一步提高了MoS_2的电催化二氧化碳还原性能.Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性,然而目前铁基催化剂的研究相对较少.Co基材料也可用于电催化二氧化碳转化.2016年,Xie等首次制备无机Co基材料用于电催化二氧化碳还原.部分氧化的钴可以促进速控步骤反应进程,进而降低整体反应的过电势.基于此,制备了超薄的Co_3O_4片层,发现价电子轨道中心更靠近费米能级时,电极材料展现出更高的催化活性.进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障.此外,Ni基材料也被证明具有高的催化二氧化碳转化活性.目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向,并且联系实验证明了方法的可行性.受到这些工作的启发,未来可将有巨大潜力的过渡金属基化合物化合物,例如过渡金属氮化物、过渡金属磷化物、过渡金属碳化物和过渡金属硼化物等,作为电催化剂研究其二氧化碳还原催化性能.另外,就目前的研究来看,将二氧化碳有效地还原到特定的产物仍存在巨大的挑战.如何优化过渡金属(Mo,Fe,Co和Ni)基催化剂价层d轨道结构,促进反应中间体吸附过程,将是解决催化活性和选择性这一科学问题的关键.  相似文献   
3.
杂原子掺杂可以调节电子结构以调整中间体吸附并优化反应路径,是设计高效CO2还原反应(CO2RR)催化剂的有应用前景的方法.B原子是常用的掺杂剂,引入B原子可以有效打破*COOH和OCHO*中间体的吉布斯自由能线性关系,并且可以通过与CO2中O原子结合来增强CO2吸附能力.B掺杂碳材料、单金属和金属氧化物的研究结果表明, B原子掺杂催化剂的CO2RR活性和/或选择性有明显提高,然而多数报道的单个活性位点的B掺杂催化剂仅表现出在相对狭窄的电位范围内的CO2RR高性能,设计制备CO2RR的宽电位高选择性催化剂仍是巨大挑战.研究表明,合金化是提供多种类的活性位点相互协调和增强催化剂固有活性,进而改善CO2RR性能并调节产物分布的可行策略.引入B原子到合金中以调节电子结构,最终优化关键中间体吸附的活性位点,对于寻找具有宽电位窗口的先进催化剂具有重要意义.本文提出了一种通过B掺杂调节CuIn合金电子结构以实现宽电位高选择性的...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号