首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
化学   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
邓盾  张云  孙爱君  胡云峰 《催化学报》2016,(11):1966-1974
1-苯乙醇是一种重要的手性药物中间体,并且(S)-1-苯乙醇和(R)-1-苯乙醇均具有应用价值.怎样获得光学醇的1-苯乙醇是药物合成中的重要问题.传统的化学合成手段不仅反应过程复杂,而且反应条件剧烈,对环境污染严重,因此生物催化方法越来越受到重视.脂肪酶和酯酶以其出色的立体选择性和温和的反应条件而被广泛用于手性药物的拆分制备.但是之前的一些研究发现脂肪酶和酯酶大都对(R)-1-苯乙醇及其衍生物有选择性,而我们发现并鉴定的脂肪酶 MT6的立体选择性则与这些脂肪酶/酯酶完全相反,具体体现在以下两个方面:(1) MT6能够特异地催化(S)-1-苯乙醇和乙酸异丙烯酯的转酯反应,生成(R)-1-苯乙醇;(2) MT6能够选择性地水解(S)-乙酸苏合香酯,生成(S)-1-苯乙醇.可见,利用 MT6催化的转酯反应和水解反应可以巧妙地进行(S)-1-苯乙醇和(R)-1-苯乙醇的制备. MT6来源于深海放线菌Marinactinospora thermotolerans SCSIO 00652,属于 GDSL家族脂肪酶第 II类群,这一类群的脂肪酶绝大多数来自微生物.有关 GDSL家族脂肪酶在手性拆分中的应用研究非常少.我们之前报道了 MT6的克隆、表达、纯化及转酯拆分反应,本文重点考察了 MT6通过水解反应制备(S)-1-苯乙醇的条件,优化了酶促水解拆分反应温度、有机共溶剂、pH、离子强度、酶用量、底物浓度、反应时间以及底物侧链长度等参数.研究发现,在反应体系中加入一定量的有机共溶剂能够大大提高产物(S)-1-苯乙醇的光学纯度,其中添加二氯甲烷获得的结果最为理想,可以将产物光学纯度从43%提高到89%,E值从2.84提高至22.82.经过优化,最佳反应温度为40°C,共溶剂二氯甲烷浓度为5%(体积分数),反应缓冲液为0.1 mol/L Tris-HCl (pH =7.0),酶用量为150 mg/mL,底物为15 mmol/L乙酸苏合香酯,反应时间控制在12 h.在此条件下,制备的(S)-1-苯乙醇的光学纯度可达97%,转化率可达28.5%,E值为95.9.此外,还比较了侧链长度不同的1-苯基乙醇酯对水解反应的影响,结果表明1-苯基乙醇酯的侧链长度可极大影响光学选择性和产率.在反应条件相同时, MT6催化侧链长度为4个碳的丁酸-1-苯乙酯水解,生成(S)-1-苯乙醇的光学纯度仅为50%.利用 AutoDock软件进行分子对接,结果显示长侧链的1-苯基乙醇酯离活性中心 His230的咪唑基较远,可能是导致酶立体选择性低的重要原因.值得注意的是,海洋微生物来源的 GDSL脂肪酶 MT6在水解反应和转酯反应中均表现出与一些已知脂肪酶/酯酶相反的立体选择性,因而具备进一步开发和应用价值.所制备的(S)-1-苯乙醇的光学纯度为97%,可以通过和转酯反应相结合的方式进一步提高产物的光学纯度和转化率.  相似文献   
2.
手性叔醇是合成药物和一些香料产品的非常重要中间体.芳樟醇是叔醇的一种,不同构型的芳樟醇具有不同的香气.因此如何研发合适的制备方法以获得高光学纯度的芳樟醇等叔醇是急需解决的技术问题.生物酶催化合成符合绿色化学的理念,但是由于叔醇化学结构中的空间位阻影响,使用生物酶催化的拆分反应制备高光学纯度的叔醇比较困难.对来自南极微生物的一个新的酯酶EST112-2进行了功能鉴定,并将其作为合成手性芳樟醇的生物催化剂.EST112-2可以通过不对称水解乙酸芳樟酯获得(S)-芳樟醇.对反应的p H、温度、共溶剂、底物浓度、催化剂用量以及反应时间等参数进行优化,EST112-2制备的(S)-芳樟醇的光学纯度大于66%,得率超过72%.EST112-2制备的(S)-芳樟醇的光学纯度要远远高于以往报道.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号