首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   6篇
化学   8篇
  2020年   1篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
排序方式: 共有8条查询结果,搜索用时 217 毫秒
1
1.
以多氨羧酸为配体,在水溶液中合成了两个同时含Bi3+和Eu3+两种金属的晶态配合物BiEu(edta)(NO3)2·6.5H2O和非晶态配合物BiEu(dtpa)(NO3)·4(H2O).采用元素分析仪、红外光谱仪、X射线粉末衍射仪等手段对产物进行表征.采用热分析仪对产物的热稳定性进行了研究.室温下采用紫外可见光度计和荧光光谱仪对固态产物的光学性质进行测试,结果显示产物既发Eu3+的线状特征荧光,又发Bi3+的带状荧光.  相似文献   
2.
采用NH4Bi(edta)·2H2O和硝酸镨为原料,二者按摩尔比为1:1在水溶液中合成了含铋(Ⅲ)和镨(Ⅲ)的双金属配合物PrBi(edta)(NO3)2·6.5H2O,产率为45%,该配合物在空气中稳定,不吸湿。用元:素分析、FT-IR、XRD和TG—DSC测试技术对产物进行了组成和结构表征。结果表明,配合物属于单斜晶系,相应晶胞参数为α=0.9885nm,b=2.3472nm,c=1.3756nm,β=93.375°。通过红外光谱和热分析共同研究了热分解过程,配合物在热分解时,经过脱水、配体热分解、金属盐分解,最后在600℃失重恒定,残余物为BiPrO3。  相似文献   
3.
为提高铁酸铋磁性和光催化性能,通过低温热分解前驱体快速制备出可磁分离回收的Ho3+掺杂铁酸铋复合物Bi0.95Ho0.05FeO3纳米颗粒,并用X粉末衍射仪(XRD)、傅里叶红外变换光谱仪(FT-IR)、紫外可见漫反射光谱仪(DRS),磁强计(VSM)和Zeta电位仪等多种手段对物相和性质进行表征,同时以甲基橙(MO)为降解模型,考察溶液的酸碱性和常见无机阴离子共存下其光催化性能。 结果显示,产物以R3c相铁酸铋为主,带隙为1.90 eV,Ho3+掺杂后使铁酸铋的磁性增强了4倍,催化性能提高30%。 而该催化剂的催化性能受降解溶液本身酸碱性以及共存阴离子的氧化性与酸碱性的影响。 另外,对该催化剂的回收也进行了研究。 结果表明,所得催化剂可通过磁分离回收,从而反复利用。  相似文献   
4.
在水溶液中合成了双金属配位聚合物({[(NO3)(H2O)3Pr(μ4-Hedta)Bi-(NO3)2]·2H2O}2)n, 并通过元素分析、红外光谱和X射线单晶衍射等手段进行了表征. 该配合物为单斜晶系, P2(1)/n空间群, a=1.26831(18) nm, b=0.82189(12) nm, c=2.3755(3) nm, β=105.055(2)°, R=0.0429, V=2.3913(6) nm3, Z=4. Bi(Ⅲ)-Pr(Ⅲ)间通过配阴离子Hedta3-中4个羧基的桥联作用构建配合物的3D结构. TG-DSC结果表明, 该配合物热分解经历脱水、配体分解以及盐分解过程, 残余物为Bi-Pr-O的三元复合氧化物.  相似文献   
5.
由Bi(Hcydta)•5H2O和Nd(NO3)•6H2O按1︰1的物质的量比, 在水溶液中合成了含Bi(III)-Nd(III)的异核配位聚合物{[(NO3)Nd(H2O)4(μ3-cydta)Bi(μ-ONO2)]•2.5H2O}n. 用元素分析、红外光谱、热重-差热和X射线单晶衍射等手段对标题配合物的组成和结构进行了表征. 该配合物属三斜晶系, 空间群 , 晶胞参数: a=0.9235(3) nm, b=1.0902(4) nm, c=1.4253(5) nm, α=71.840(4)°, β=86.877(4)°, γ=76.991(4)°, Z=2, Mr=936.65, V=1.3284(8) nm3, Dc=2.342 g• cm-3, μ=8.646 mm-1, F(000)=900, 最终偏离因子R1=0.0406, wR2=0.1124. 在该配合物中, 铋(III)与配体cydta4-的4O2N和1个硝酸根中1个O原子以及邻位分子的硝酸根形成8配位的畸变双帽三棱柱. 钕(III)与4个水分子的O, 1个硝酸根中2个O以及来自3个不同配体cydta4-的桥联羧基O结合, 形成9配位的三帽三棱柱构型. 羧酸根在Bi—Nd和硝酸根在Bi—Bi间的桥联作用, 使得整个配合物分子连接成无限二维框架结构. 热分析以及分解产物的红外光谱表明配合物热分解经历脱水、配体热分解、硝酸盐转变成氧化物等多步连续分解过程, 最后在625 ℃失重恒定.  相似文献   
6.
为提高ZnO的光催化性和稳定性,扩展对光的吸收范围,以乙二胺四乙酸(H4EDTA)为配体形成配位前驱体,通过低温热分解配位前驱体法制备了Gd3+掺杂ZnO复合物Zn1-xGdxO2(x=0~0.1)纳米颗粒。 采用X射线粉末衍射(XRD)、红外光谱法(FT-IR)、扫描电子显微镜(SEM)、荧光光谱法(FL)、紫外可见漫反射光谱法(UV-Vis DRS)、交流阻抗(EIS)以及动态光电流响应(i-t)等多种手段研究掺杂比例对氧化锌物相、表面形貌、光学性以及光电响应性等的影响。 结果表明,Gd3+掺杂摩尔分数低于3%时,产物为单相纤锌矿ZnO,提高掺杂比例(>3%)不仅使ZnO晶格萎缩,同时还出现少量Gd2O3第二相,且晶粒随掺杂摩尔分数的增加而降低。 Gd3+掺杂使ZnO能带结构发生改变,其价带、导带和带隙等各值都随着掺杂摩尔分数的增加而降低。 I-t结果表明,适量掺杂可提高ZnO的光电响应能力,其中掺杂摩尔分数1%所得ZnO的光电流密度最大(10 mA/m2)。甲基橙(MO)的光降解结果显示,Gd3+掺杂能提高ZnO的催光化性,其中1%掺杂对ZnO的催化性提高最大。 最后还对ZnO的催化选择性和耐酸碱性进行了简单研究。  相似文献   
7.
A new Bismuth(Ⅲ)-Lanthanum(Ⅲ) heterobimetallic polymer complex,{[(H_2O)_5La(μ_4-edta)Bi(NO_3)_2]·3H_2O}_n(edta=diaminetetraacecarboxylate),has been hydrothermally synthesized and characterized by elemental analysis,FT-IR,and X-ray diffraction single crystal structure analysis.It crystallizes in the monoclinic system,with space group P2(1)/n,a=1.27395(5)nm,b=0.82608(4) nm,c=2.38819(11) nm,β=104.9000(10)°,V=2.42879(19) nm~3,Z=4,Dc=2.438 g·cm- 3,μ=9.077mm~(-1),F(000)=1678,R_1=0.0343,wR_2=0.0906.In this complex,Bi atom is coordinated by four carboxyl O atoms from a single edta~(4-) anion.La atom is bonded to four O atoms from four bridging carboxyl O atoms belonging to four different edta~(4-) anions and five O atoms from five H_2O molecules.Bi atoms and La atoms are linked by bridged edta~(4-) anions,resulting into a novel infinite 3D network structure.TG-DSC and IR indicate that thermal decomposition proceeds in several stages,dehydration,pyrolysis of ligand,and finally decomposition of salt,and the residue is composite oxide based on δ-Bi_2O_3 at the temperature of 600℃.  相似文献   
8.
由Bi(Hcydta)·5H2O和Nd(NO3)·6H2O按1:1的物质的量比,在水溶液中合成了含Bi(Ⅲ)-Nd(Ⅲ)的异核配位聚合物[(NO3)Nd(H2O)4(μ3-cydta)Bi(μ-ONO2)]·2.5H2O)n.用元素分析、红外光谱、热重-差热和X射线单晶衍射等手段对标题配合物的组成和结构进行了表征.该配合物属三斜晶系,空间群P1,晶胞参数:a=0.9235(3)nm,b=1.0902(4)nm,c=1.4253(5)nm,α=71.840(4)°,β=86.877(4)°,γ=76.991(4)°,z=2,Mr=936.65,V=1.3284(8)nm^3,Dc=2.342g·cm^-3,μ=8.646mm^-1,F(000)=900,最终偏离因子R1=0.0406,wR2=0.1124.在该配合物中,铋(Ⅲ)与配体cydta^4-的4O2N和1个硝酸根中1个O原子以及邻位分子的硝酸根形成8配位的畸变双帽三棱柱.钕(Ⅲ)与4个水分子的O,1个硝酸根中2个O以及来自3个不同配体cydta^4-的桥联羧基O结合,形成9配位的三帽三棱柱构型.羧酸根在Bi-Nd和硝酸根在Bi-Bi间的桥联作用,使得整个配合物分子连接成无限二维框架结构.热分析以及分解产物的红外光谱表明配合物热分解经历脱水、配体热分解、硝酸盐转变成氧化物等多步连续分解过程,最后在625℃失重恒定.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号