首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   4篇
  国内免费   2篇
化学   1篇
力学   1篇
综合类   10篇
数学   1篇
物理学   13篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2009年   2篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
利用圆环类微带行波天线的辐射功率与等效行波磁流衰减常数之间的自洽关系,导出了计算衰减常数的迭代方程;为加快迭代速度,将辐射积分中的格林函数展开成柱面波函数,得到快速收敛的级数和.最后给出了方向图的计算曲线,与实验结果对比吻合良好,表明此方法模拟圆环类微带行波天线辐射特性的有效性.  相似文献   
2.
基于体-面混合积分方程方法,研究了介质导体复合结构目标的电磁散射特性.对导体采用面积分方程,对介质应用体积分方程,由等效原理建立以导体面电流及任意非均匀介质体极化电流为未知量的矩阵方程,利用稳定的双共轭梯度并结合快速傅立叶变换技术(BiCGS-FFT)来加速矩阵方程求解,相对于传统的矩量法大大降低了计算时间和内存需求.数值结果验证了该方法的正确性.同时,它为复杂复合结构目标散射特性研究奠定了一定的基础.  相似文献   
3.
采用2维自洽完全流体模型,数值研究了阳极为通孔的高气压微腔放电结构中等离子体参数的变化过程。模拟结果获得了当氩气压强为13.3 kPa时,放电中的电势分布、等离子体密度分布、径向电场分布和电子温度分布等重要参数的演化过程。模拟结果表明在放电过程中,阴极附近的电场由轴向电场逐步转变为径向电场,等离子体密度最大值位于放电腔中间处,并随时间推移由阳极附近向阴极附近移动,电子温度的最大值出现在阴极环形鞘层区域。  相似文献   
4.
有机-无机杂多酸类离子液体催化汽油超声氧化脱硫   总被引:2,自引:0,他引:2  
合成了一系列有机-无机杂多酸类离子液体, 并将其应用于超声作用下的催化模拟汽油氧化脱硫反应. 结果表明, 在超声波辅助下, 不仅反应时间大大缩短, 而且脱硫效率也大幅提高. 在合成的一系列催化剂中, Zr0.25[BMIM]HPW12O40表现出最佳的催化活性. 考察了超声波功率、 超声/间隙时间、 催化剂用量、 H2O2用量、 反应温度及反应时间等因素对脱硫效果的影响. 以Zr0.25[BMIM]HPW12O40为催化剂, 在优化的条件下[n(Cat.)=0.008 mmol, V(H2O2)=40 μL, V(模拟油)=10 mL, V(乙腈)=1 mL, 温度25 ℃, 时间10 min, 超声功率300 W, 超声时间2 s, 间隙时间1.5 s], 二苯并噻吩(DBT)的脱硫率达到97.8%; 该催化剂循环使用5次后, 脱硫率仍为81.9%; 其对不同硫化物的催化活性顺序为DBT>4,6-二甲基苯并噻吩(4,6-DMDBT)>乙硫醚>苯硫醚>正丁硫醇>甲基苯基硫醚>苯并噻吩(BT)>噻吩.  相似文献   
5.
6.
基于稳定双共轭梯度-快速傅立叶变换(BCGS-FFT)和离散复镜像方法(DCIM),快速求解了平面分层媒质中三维目标电磁散射.首先引入离散复镜像方法用以加速并矢格林函数的计算,并针对三维问题,采用了裂项计算并矢格林函数,进一步减少了时间需求.然后在离散积分方程中采用弱模式并矢格林函数,降低了积分方程的奇异性,加快了迭代算法的收敛.数值结果表明,本文方法计算耗时较改进前减少90%,适于电大尺寸问题的求解.  相似文献   
7.
利用电压和磁感应强度传感器定量验证了霍尔元件的输出电压与磁感应强度的线性关系,体现了DIS(数字化信息系统)实验的优越性.  相似文献   
8.
9.
建立了平板目标与随机粗糙面的复合散射模型,求解过程包括用板上感应电流的谱域积分表示平板目标的初级散射场;用物理光学方法计算随机粗糙面的次级散射场和统计分析复合散射的平均散射功率.通过选用正态分布粗糙面作为计算实例.数值结果显示出平板目标与随机粗糙面之间相互作用散射分量的重要性及空间分布特性.  相似文献   
10.
为了准确诊断真空中微波等离子体喷流的电子数密度,利用统一的发射和单郎缪尔探针测量等离子体的空间电位,再测量等离子体的电流-电压特性曲线.根据空间电位测量结果,在等离子体的电流-电压特性曲线上能准确地获取饱和电流,从而处理出电子数密度.最后的诊断实验表明,当真空环境压强为2—6 Pa、等离子体发生器以60 W以下的微波功率击穿流量范围是42—106 mg/s的氩气时,所产生的微波等离子体喷流中电子数密度分布在1×1016—7.2×1016/m3范围内.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号