首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
化学   4篇
  2022年   1篇
  2021年   1篇
  2010年   2篇
排序方式: 共有4条查询结果,搜索用时 16 毫秒
1
1.
通过自组装方法将修饰有二茂铁基团的富T序列DNA分子(DNA-Fc)固定在金电极表面,得到了一种基于DNA修饰电极的电化学汞离子(Hg2+)传感器.当溶液中有Hg2+存在时,Hg2+可与修饰电极上DNA的T碱基发生较强的特异结合,形成T-Hg2+-T发卡结构,使DNA分子构象发生改变,其末端具有电化学活性的二茂铁基团远离电极表面,电化学响应随之发生变化.示差脉冲伏安法(DPV)结果显示:DNA末端二茂铁基团的还原峰在0.26V(vs饱和甘汞电极(SCE))附近,峰电流随溶液中Hg2+浓度的增加而降低;Hg2+浓度范围在0.1nmol·L-1-1μmol·L-1时,电流相对变化率与Hg2+浓度的对数呈现良好的线性关系.该修饰电极对Hg2+的检测限为0.1nmol·L-1,可作为痕量Hg2+检测的电化学生物传感器.干扰实验也表明,该传感器对Hg2+具有良好的特异性与灵敏度.  相似文献   
2.
DNA分子中的碱基对可以长程传递电荷, DNA分子中的碱基π堆积结构为电荷的长程传递提供了良好的通道. 电荷在DNA分子中的传递受碱基序列的影响, 利用这种性质可以构建DNA碱基错配检测的电化学传感器. 寡聚酰胺能和DNA以小沟绑定方式高亲和力地结合, 并且具有序列识别功能, 本文以带有硝基官能团的寡聚酰胺分子为电化学探针, 设计了电化学DNA生物传感器. 结果显示, 寡聚酰胺与DNA修饰电极作用后, 电化学响应显著增强, 并且可以作为检测DNA碱基错配的电化学探针分子.  相似文献   
3.
高能量密度二次电池的商业化将会推动便携式电子设备和电动车的飞速发展。锂金属电池因具有较高的理论能量密度而受到研究者的广泛关注。然而,锂金属负极较低的库仑效率(CE)和枝晶生长等问题,严重制约了锂金属电池的发展。库仑效率是衡量电池体系可逆性的关键参数之一,锂金属负极的库仑效率在不同电解液中存在较大的差异,本文以四种常见的电解液为例,包括1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯电解液,1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯+5%(w)氟代碳酸乙烯酯电解液,1 mol·L-1双(三氟甲烷磺酰)亚胺锂-乙二醇二甲醚/1,3二氧戊环+2%(w)硝酸锂电解液,以及4 mol·L-1双氟磺酰亚胺锂-乙二醇二甲醚电解液,利用原子力显微镜研究了不同电解液体系中锂金属的生长行为,探讨了锂金属沉积形貌与其库仑效率之间的联系,为发展高效的锂金属负极提供了参考依据。  相似文献   
4.
近年来,锂金属电池由于具有较高的能量密度而成为储能领域的研究热点。电解液作为锂金属电池的“血液”发挥着至关重要的作用。在传统锂离子电池电解液中,锂金属负极与电解液之间的界面副反应严重并伴随着锂枝晶生长,从而导致安全隐患以及循环寿命缩短等问题。在解决锂金属负极问题上,电解液调控策略具有易操作性和有效性,因而在推动锂金属电池发展方面具有举足轻重的地位。氟代电解液是目前重要的研究方向,氟代电解液在循环过程中能够在电极表面形成富含LiF的固体电解质界面膜(SEI);该界面膜不仅可以有效抑制负极锂枝晶的形成,并且在正极方面能够大幅提高电解液的氧化稳定性,从而提升高电压正极的适配性和锂金属电池的循环稳定性。氟代电解液中氟代溶剂/氟代锂盐的分子结构对电解液的溶剂化结构有重要影响。当氟代溶剂分子中氟原子的位置与数量不同时,氟代溶剂的物理化学性质也会随之发生变化,进而改变了电解液与电极的界面反应性。因此,氟代溶剂能够起到调制SEI膜成分和结构的作用,是决定电池性能的关键因素。本文总结了应用于锂金属电池的主要氟代溶剂,尤其是近几年来发展的新型氟代溶剂;着重介绍了高度氟代的溶剂分子作为局域超浓电解液的稀释剂,以及对溶剂进行精准分子设计得到的部分氟代溶剂等。此外,本文还分析探讨了氟代溶剂分子与电池性能之间的构效关系,展望了构建新型氟代溶剂分子的策略,希望能对电解液溶剂分子的结构设计以及构效关系的评估有一定的启发意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号