首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   21篇
化学   30篇
  2018年   1篇
  2013年   1篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   9篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
排序方式: 共有30条查询结果,搜索用时 187 毫秒
1.
一类新型杂环聚芳酰胺的合成与性能研究   总被引:5,自引:0,他引:5  
采用二氮杂萘类双酚 4 (4 羟基苯基 ) 2 ,3 二氮杂萘 1 酮 (DHPZ)与对氯苯腈反应制得二腈化合物 ,进一步水解为二酸 .以此新型二酸与不同二胺聚合制得的聚芳酰胺均具有较高的耐热性能 ,其Tg 在 2 91~318℃ ,且易溶于极性非质子溶剂中 .聚合物的特性粘数为 1 17~ 1 5 0dL g(2 5℃ ,0 5 %inNMP) ,对所得聚酰胺进行性能研究 ,其拉伸强度为 71~ 86MPa ,断裂伸长率为 8%~ 13% ,拉伸模量为 0 86~ 1 0 2GPa ,电阻系数数量级为 10 1 4~ 10  相似文献   
2.
将自制的4,4'-二氨基二苯醚-2,2'-二磺酸基(ODADS)、 含氮杂环芳香二胺1,2-二氢-2-(4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基]-二氮杂萘-1-酮(DHPZ-DA)和1,4,5,8-萘四甲酸二酐(NTDA)进行直接缩合聚合反应, 通过改变磺化二胺单体的含量来改变聚合物的磺化度, 成功地合成了一系列高分子量的不同磺化度的六元环聚酰亚胺(SPIs), 其特性粘度在0.55-1.47 dL/g. 采用FTIR和 1H NMR技术表征了聚合物的结构. 研究了经溶液浇铸成磺化聚合物膜的理化性质. 结果表明, 随着聚合物磺化度的增大, 膜的含水率和离子交换能力增大, 尺寸稳定性、 对水的稳定性以及抗氧化性降低.  相似文献   
3.
以氯甲基辛醚为氯甲基化试剂, 对杂萘联苯聚芳醚酮酮(PPEKK)进行改性, 制备了氯甲基化杂萘联苯聚芳醚酮酮(CMPPEKK). 考察了氯甲基辛醚用量对氯甲基化程度的影响. 1H NMR表明氯甲基成功引入到聚合物结构中. 采用溶液法制备了CMPPEKK基膜, 然后将其进行三甲胺胺化, 制备了季铵化杂萘联苯聚芳醚酮酮(QAPPEKK)阴离子交换膜. 表征了QAPPEKK的基本性能: 离子交换容量, 含水率, 面电阻. QAPPEKK膜的含水率随离子交换容量增加而升高, 面电阻随离子交换容量的增加而降低. 将QAPPEKK膜应用于全钒液流电池(VRB)中, 电池的能量效率达到85.0%, 电流效率为98.5%, 电压效率为86.3%.  相似文献   
4.
以杂萘联苯聚芳醚超滤膜为支撑层,通过间苯二胺(MPD)、哌嗪(PIP)与均苯三甲酰氯(TMC)的界面聚合制备复合膜.用红外光谱和X射线衍射分别分析了超薄功能层的化学结构与聚集态,用原子力显微镜观察了膜表面形貌,并用统计学方法计算了膜表面的平均粗糙度等特性参数,研究了MPD/PIP比例对膜表层化学结构、形貌和分离性能的影响.结果表明,随着二胺单体MPD/PIP比例从0/100提高到100/0,功能层聚酰胺的聚集态具有从无定形向部分结晶转变的趋势,复合膜表面平均粗糙度由17.8nm提高到71.9nm,膜对NaCl的截留率由26%提高到99%,而通量则由130L.m-2.h-1降低到12L.m-2.h-1.复合膜具有良好的稳定性,温度由25℃提高到80℃,通量提高了2倍左右,而对NaCl的截留率基本不变.  相似文献   
5.
一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征   总被引:8,自引:0,他引:8  
用含二氮杂萘酮结构类双酚DHPZ,3,3′-二磺酸钠基-4,4′-二氟二苯酮,2,6-二氯苯腈以及4,4′-二氟二苯酮,通过缩合共聚合反应合成了一系列不同磺化度、高分子量的磺化聚芳醚腈酮.聚合物特性粘数为0·58~2·0dL/g.用红外光谱(FT-IR),核磁共振谱(1H-NMR)表征了聚合物结构.用差示扫描量热仪(DSC)和热重分析仪(TGA)研究了聚合物的耐热性能,研究表明其玻璃化温度(Tg)可达352℃,5%热失重温度大于500℃.以N-甲基吡咯烷酮为溶剂,溶液浇铸法制备了聚合物膜,并测定了膜的溶胀率以及质子交换能力.结果表明,与Nafion膜相比,磺化聚芳醚腈酮膜在相同的质子交换能力条件下,溶胀率显著降低.  相似文献   
6.
以1,4-二(3-磺酸钠-4-氟代苯甲酰基)苯(SBFBB)和4,4’-二氟二苯酮(DFK)为二卤单体,与杂萘联苯类双酚进行溶液亲核缩聚反应,通过调控SBFBB与DFK的比例,制备了一系列具有不同磺化度的高分子量磺化杂萘联苯聚醚酮酮醚酮(SPPEKKEKs)。采用红外光谱、核磁共振谱、示差扫描量热分析等对SPPEKKEKs的结构和性能进行了表征,随着磺化度增加,SPPEKKEKs的玻璃化转变温度增大。以氮甲基吡咯烷酮为溶剂制备质子交换膜,随着SPPEKKEKs的磺化度增加,质子交换膜的含水率和质子传导率增加,95℃时,质子交换膜的质子传导率均达到10-2S.cm-1,SPPEKKEKs质子交换膜具有较好的耐氧化性能。  相似文献   
7.
单体结构对聚酰胺类复合膜分离性能的影响   总被引:1,自引:0,他引:1  
采用间苯二甲酰氯、均苯三甲酰氯、均苯四甲酰氯分别与间苯二胺、乙二胺、哌嗪在耐高温杂萘联苯聚醚砜酮(PPESK)超滤膜表面进行界面聚合,制备了7种具有不同功能层结构的新型超薄复合膜.采用红外、X射线衍射、原子力显微镜等测试手段对复合膜结构进行表征,测试了7种复合膜对0·2%的Na2SO4水溶液,0·2%NaCl水溶液的分离性能,分析了单体结构与复合膜分离性能的关系.  相似文献   
8.
以4-(3-苯基-4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ-P)、 4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)和1,4-二(4'-氟苯甲酰基)苯(BFBB)为原料, 经溶液亲核取代缩聚反应, 通过调节DHPZ-P和DHPZ的比例, 合成了一系列侧苯基杂萘联苯聚醚酮酮(PPEKK-P), 然后以浓硫酸为磺化剂, 制备出一系列磺化侧苯基杂萘联苯聚醚酮酮(SPPEKK-P). 利用傅里叶变换红外光谱(FTIR)和氢核磁共振谱(1H NMR)对聚合物结构进行表征, 结果表明, 磺酸基团引入到聚合物链的侧苯基上. 采用溶液浇铸法制备SPPEKK-P质子交换膜. SPPEKK-P膜的吸水率、 溶胀率和质子传导率均随离子交换容量(IEC)的增加而增加, 且具有较好的耐氧化性. IEC最高的SPPEKK-P-100膜的质子传导率在95℃能达到7.44×10-2 S/cm, 且甲醇渗透系数为5.57×10-8 cm2/s, 阻醇性能优于Nafion117膜.  相似文献   
9.
质子交换膜是质子交换膜燃料电池的核心部件之一,其性能的优劣直接关系燃料电池的工作性能.目前质子交换膜燃料电池多采用全氟磺酸离子膜,全氟磺酸膜虽然具有较高的质子传导性和良好的化学稳定性,但是也具有价格昂贵、甲醇渗透高和高温下质子传导性能下降等缺点.  相似文献   
10.
以4-(3,5-二甲基-4-羟基苯基)2,3-二氮杂萘-1-酮,3,3′-二磺酸钠-4,4′-二氟苯甲酮和4,4′-二氯二苯砜为原料,利用亲核缩聚反应,通过改变磺化单体的含量,制备出一系列不同磺化度的杂萘联苯聚醚砜酮(SPPESK-DM).采用FTIR、1H-NMR表征了聚合物的结构,热失重分析仪研究了聚合物的耐热稳定性,以N-甲基-2-吡咯烷酮为溶剂采用溶液浇铸法成膜研究该系列聚合物膜的性能.结果表明,SPPESK-DM磺酸基的热分解温度在260℃以上,主链分解温度在410℃以上;膜的吸水率、溶胀率、离子交换容量和质子传导率均随着磺化度的增大而增大,磺化度为1.0的SPPESK-DM50的质子传导率达到1.08×10-2S/cm(85℃),且甲醇渗透系数为2.06×10-7cm2/s,低于Nafion117膜的甲醇渗透系数(2×10-6cm2/s).此系列膜的耐氧化性比较优异,可望用于质子交换膜燃料电池中.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号