首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   13篇
  国内免费   70篇
化学   461篇
晶体学   6篇
力学   3篇
综合类   15篇
数学   2篇
物理学   53篇
  2023年   6篇
  2022年   10篇
  2021年   23篇
  2020年   23篇
  2019年   14篇
  2018年   19篇
  2017年   21篇
  2016年   12篇
  2015年   9篇
  2014年   17篇
  2013年   29篇
  2012年   21篇
  2011年   26篇
  2010年   13篇
  2009年   21篇
  2008年   33篇
  2007年   21篇
  2006年   23篇
  2005年   23篇
  2004年   28篇
  2003年   17篇
  2002年   21篇
  2001年   19篇
  2000年   11篇
  1999年   9篇
  1998年   14篇
  1997年   7篇
  1996年   12篇
  1995年   4篇
  1994年   4篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有540条查询结果,搜索用时 15 毫秒
1.
利用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和马来酸酐(MA)对淀粉进行改性得到磷化淀粉(DOPOMASt),通过红外光谱(FTIR)、核磁共振谱(1H-NMR)和X射线光电子能谱(XPS)确定其结构.利用DOPOMASt作为碳源,与聚磷酸铵(APP)复配后通过熔融共混制备了阻燃聚乳酸(PLA)复合材料.采用垂直燃烧(UL-94)、极限氧指数(LOI)、热重分析(TGA)研究DOPOMASt对PLA的阻燃性能和热性能的影响.利用扫描电子显微镜(SEM)观察阻燃剂在PLA中的分散和燃烧后残炭的微观形貌,同时采用TG-IR联用技术对PLA复合材料热降解气相产物进行分析.结果表明,DOPOMASt促进APP在PLA中分散均匀,当DOPOMASt和APP质量比为1∶1,总质量为10%时,LOI达到26.0%且通过UL-94 V0测试.DOPOMASt与APP协效阻燃促进PLA树脂成碳,形成更加致密的炭层并减少可燃气体的产生,赋予PLA良好的阻燃性能.  相似文献   
2.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   
3.
Dialdehyde sweet potato starch (DASS) with various aldehyde contents was prepared and the properties analyzed in terms of solubility, intrinsic viscosity, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results demonstrated that when the aldehyede content of DASS was increased from 20% to 95%, the solubility, molecular weight, crystallizability, and thermal stability decreased. Thermoplastic DASS (TPDASS) was prepared by adding glycerol as a plasticizer; the thermal, rheological, hydrophobic, and tensile properties of TPDASS were investigated. The results indicated that, for the same glycerol content, with the increase of aldehyde content, the moisture adsorption decreased, while the shear viscosity, glass transition temperature, and tensile properties of TPDASS increased significantly. The effects were attributed to the introduction of aldehyde groups reducing the hydrogen bonds and decreasing the hydrophility of the starch. Moreover, the aldehyde and hydroxyl groups of DASS favored a semi-acetal formation with higher aldehyde content and cross-linking of DASS occurred with the increase of aldehyde content. In summary, compared to starch, the thermoplastic properties and hydrophobicity of DASS was improved. In the presence of water (10 wt%), the tensile strength of TPDASS with 95% aldehyde content (TPDASS95) moderately decreased, from 16.7 MPa to 14.0 MPa, when the glycerol content increased from 10% to 30%. The TPDASS with improved properties will find their applications in preparing biodegradable plastics.  相似文献   
4.
Starch nanoparticle (SNP)‐based pressure sensitive adhesives (PSAs) with core‐shell particle morphology (starch nanoparticle core/acrylic polymer shell) are produced via seeded, semi‐batch emulsion polymerization at 15 wt% SNP loading (relative to total polymer weight) and 40 wt% latex solids. Crosslinker and chain transfer agent (CTA) are introduced to the acrylic shell polymer formulation at a range of concentrations according to a 32 factorial design to tailor the latex and adhesive properties of SNP‐based latexes. The crosslinker and CTA show no significant effect on polymerization kinetics, particle size, and viscosity. Latex gel content is predicted using an empirical model, which is a function of crosslinker and CTA concentration. Both the gel content and glass transition temperature strongly affect the adhesive properties (tack, peel strength, and shear strength) of the SNP‐based latex films. 3D response surfaces for the adhesive properties are constructed to facilitate the design of SNP‐based PSAs with desired properties.  相似文献   
5.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   
6.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   
7.
Sagittaria sagittifolia L. is a well-known plant, belongs to the Alismataceae family. Sonication can improve the functional properties of starch; hence, the aim of this study was to develop ultrasonically modified arrowhead starch (UMAS) using a sophisticated and eco-friendly tri-frequency power ultrasound (20/40/60 kHz) method at 300, 600, and 900 W for 15 and 30 min. Significant (p < 0.05) increases in swelling power, solubility, and water and oil holding capacities were achieved. FTIR spectroscopy corroborated the ordered, amorphous, and hydrated crystals of the sonicated samples. Increases in sonication frequency and power led to significant (p < 0.05) increases in onset gelatinization temperatures. Scanning electron microscopic analysis of sonicated samples showed superficial cracks and roughness on starch granules appeared in a sonication power-dependent manner compared with that of untreated sample. Overall, the ultrasonically-treated samples showed improved physicochemical properties, which could be useful for industrial applications.  相似文献   
8.
In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the polarization cross of lotus-seed starch granules was weakening gradually with increasing the treatment time, which indicated the termination of their ordered crystallite structures. The morphologies of granules were collapsed once the UHP was kept at 500 MPa for 60 minutes. The particle size analysis demonstrated that the granule size and distribution of lotus-seed starches increased as the treatment time was prolonged. X-ray diffraction studies showed that the intensity of the feature diffraction peaks of starch decreased and eventually disappeared with increasing the treatment time, and B-type transformation pattern was observed. The Fourier transform infrared spectra (FTIR) analysis of starch showed that the UHP is a physical modification processing because no new groups formed. The research showed that UHP processing at certain degree is capable to achieve the modification of lotus-seed starch. It is of significance for the deep processing of lotus-seed products.  相似文献   
9.
Pressure treatments of 300 and 500?MPa during 15?min were found to change starch–water sorption (adsorption and desorption) isotherms and the hysteresis effect, particularly the 500?MPa. This last treatment shifted the adsorption/desorption isotherms downward, compared with non-treated starch and starch treated at 300?MPa. The observed hysteresis effect decreased with the increase in pressure level in the whole aw range, indicating that adsorption and desorption isotherms became closer. Guggenheim–Anderson–De Boer and Brunauer–Emmett–Teller model parameters Cb, Cg, K and Mm also showed changes caused by pressure, the latter being lower in the pressure-processed samples, thus indicating possible changes on microbial and (bio)chemical stabilities of pressure-processed food products containing starch.  相似文献   
10.
The study focused on the influence of starch modified by octenyl succinic anhydride (OSA) on the rheological and thermal properties of gluten-free dough containing corn and potato starch with the addition of pectin and guar gum as structure-forming substances. The starch blend used in the original dough recipe was partially (5% to 15%) replaced with OSA starch. The rheological properties of dough samples were determined, and the properties of the resulting bread were analyzed. It was found that the dough samples behaved as weak gels, and the values of storage and loss moduli (G′ and G″, respectively) significantly depended on angular frequency. Various shares of OSA starch in recipes modified dough in different ways, causing changes in its rheological characteristics. The introduction of OSA starch preparations resulted in changes in the bread volume and physical characteristics of the crumb. All the applied preparations caused an increase in bread porosity and the number of pores larger than 5 mm, and there was a parallel decrease in pore density. The presence of OSA starch preparations modified bread texture depending on the amount and type of the applied preparation. The introduction of OSA starches in gluten-free bread formulation caused a significant drop in the enthalpy of retrograded amylopectin decomposition, indicating a beneficial influence of such type of additive on staling retardation in gluten-free bread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号