首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11384篇
  免费   3381篇
  国内免费   1097篇
化学   3839篇
晶体学   59篇
力学   38篇
综合类   120篇
数学   951篇
物理学   10855篇
  2024年   10篇
  2023年   217篇
  2022年   365篇
  2021年   438篇
  2020年   498篇
  2019年   435篇
  2018年   371篇
  2017年   367篇
  2016年   467篇
  2015年   502篇
  2014年   769篇
  2013年   960篇
  2012年   729篇
  2011年   854篇
  2010年   678篇
  2009年   731篇
  2008年   931篇
  2007年   935篇
  2006年   875篇
  2005年   744篇
  2004年   614篇
  2003年   575篇
  2002年   523篇
  2001年   374篇
  2000年   391篇
  1999年   261篇
  1998年   288篇
  1997年   200篇
  1996年   113篇
  1995年   116篇
  1994年   75篇
  1993年   63篇
  1992年   62篇
  1991年   47篇
  1990年   47篇
  1989年   49篇
  1988年   24篇
  1987年   17篇
  1986年   26篇
  1985年   26篇
  1984年   19篇
  1983年   10篇
  1982年   12篇
  1981年   8篇
  1980年   5篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1973年   6篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Yong-Ting Liu 《中国物理 B》2022,31(5):50303-050303
We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.  相似文献   
2.
We discuss a new gravitational effect that the wave packet of a free-fall quantum particle undergoes a spin-dependent transverse shift in Earth's gravitational field. This effect is similar to the geometric spin Hall effect (GSHE) (Aiello 2009 et al Phys. Rev. Lett. 103 100401 ), and can be called gravity-induced GSHE. This effect suggests that the free-fall wave packets of opposite spin-polarized quantum particles can be split in the direction perpendicular to spin and gravity.  相似文献   
3.
Jing-Peng Song 《中国物理 B》2022,31(3):37401-037401
Introducing metal thin films on two-dimensional (2D) material may present a system to possess exotic properties due to reduced dimensionality and interfacial effects. We deposit Pb islands on single-crystalline graphene on a Ge(110) substrate and studied the nano- and atomic-scale structures and low-energy electronic excitations with scanning tunneling microscopy/spectroscopy (STM/STS). Robust quantum well states (QWSs) are observed in Pb(111) islands and their oscillation with film thickness reveals the isolation of free electrons in Pb from the graphene substrate. The spectroscopic characteristics of QWSs are consistent with the band structure of a free-standing Pb(111) film. The weak interface coupling is further evidenced by the absence of superconductivity in graphene in close proximity to the superconducting Pb islands. Accordingly, the Pb(111) islands on graphene/Ge(110) are free-standing in nature, showing very weak electronic coupling to the substrate.  相似文献   
4.
Yangyang Ge 《中国物理 B》2022,31(4):48704-048704
Quantum singular value thresholding (QSVT) algorithm, as a core module of many mathematical models, seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors. The existing all-qubit QSVT algorithm demands lots of ancillary qubits, remaining a huge challenge for realization on nearterm intermediate-scale quantum computers. In this paper, we propose a hybrid QSVT (HQSVT) algorithm utilizing both discrete variables (DVs) and continuous variables (CVs). In our algorithm, raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations. Our algorithm requires O[log(MN)] qubits with O(1) qumodes and totally performs O(1) operations, which significantly reduces the space and runtime consumption.  相似文献   
5.
This paper considers a multi-user wireless communication network supported by a multiple-antenna base station (BS), where the users who are located sufficiently close to the BS employ wireless energy harvesting (EH) to replenish their energy needs. The objective of this work is to design an efficient beamforming to maximize the minimum throughput among all the information users (IUs), subject to EH constraints. In this regard, transmit time-switching approach is employed, where energy and information are transmitted over different fractions of a time-slot. To achieve efficient EH, a conjugate beamforming (matched filtering) is applied. To design efficient information beamforming for max–min throughput optimization, conventional zero-forcing (ZF) beamforming can be adopted, however, it will not suppress multi-user interference if the number of users is greater than the number of antennas at the BS. To this end, different from the existing works which employ regularized zero-forcing (RZF) beamforming, this work proposes a new generalized zero-forcing (GZF) beamforming, which promises better max–min throughput compared to that achieved by the RZF beamforming. A new path-following algorithm is developed to achieve max–min throughput optimization by GZF beamforming, which is based on a simple convex quadratic program over each iteration.  相似文献   
6.
Hengcan Zhao 《中国物理 B》2022,31(11):117103-117103
CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressure- or field-tuned, extended quantum critical phase at zero temperature. Identifying characteristic signatures of the emerging quantum critical phase, which are expected to be distinct from those near a quantum critical point, remains challenging. In this work, by performing ultrasonic and thermoelectric measurements down to very low temperatures in a 3He-4He dilution refrigerator in the presence of magnetic field, we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase, including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.  相似文献   
7.
采用氯化锌(ZnCl_(2))修饰镉基CdSe/ZnS蓝光量子点(B-QD)薄膜,发现与量子点表面结合力更强的ZnCl_(2)能够部分取代量子点长链配体油酸,有效钝化量子点表面缺陷,提高薄膜的荧光量子效率(PLQY)。此外,由于ZnCl_(2)具有偶极作用,使量子点真空能级提高0.2 eV,一方面可改善电子和空穴载流子注入平衡,另一方面可有效降低发光器件的启亮电压,提高器件的发光寿命。这种无机配体修饰量子点薄膜的方法可能为解决蓝光量子点发光二极管(B-QLEDs)因空穴注入困难和量子点表面缺陷导致器件性能不高的问题提供一个有效思路。  相似文献   
8.
We examine the profile of second harmonic generation (SHG) for GaAs/GaAlAs spherical quantum dots (QDs) of Woods-Saxon (WS) plus attractive inversely quadratic (AIQ) potential under the joint influence of additional factors (pressure and temperature) and structural parameters (strengths and radius). The energies and wave functions in GaAs/GaAlAs spherical QDs under WS-AIQ limiting potential are calculated using the parametric Nikiforov-Uvarov (NU) method. Depending on the calculated energies and corresponding wave functions, the SHG coefficient is examined by the iterative procedure in the density matrix method for this system. Finally, the calculated results display that a strong SHG coefficient response, and red shift or blue shift energy can be acquired by adjusting parameters.  相似文献   
9.
Xinwen Ma 《中国物理 B》2022,31(9):93401-093401
The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed. The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombination spectroscopy and VUV/x-ray spectroscopy. The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region, ion-induced fragmentation mechanisms of molecules, hydrogen-bound and van de Waals bound clusters, interference, and phase information observed in ion-atom/molecule collisions. With this achievements, two aspects of theoretical studies related to low energy and relativistic energy collisions are presented. The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed. At the end of this review, some future prospects of research related to highly charged ions are proposed.  相似文献   
10.
We consider an intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) in which a multi antenna power beacon (PB) sends a dedicated energy signal to a wireless powered source. The source first harvests energy and then utilizing this harvested energy, it sends an information signal to destination where an external interference may also be present. For the considered system model, we formulated an analytical problem in which the objective is to maximize the throughput by jointly optimizing the energy harvesting (EH) time and IRS phase shift matrices. The optimization problem is high dimensional non-convex, thus a good quality solution can be obtained by invoking any state-of-the-art algorithm such as Genetic algorithm (GA). It is well-known that the performance of GA is generally remarkable, however it incurs a high computational complexity. To this end, we propose a deep unsupervised learning (DUL) based approach in which a neural network (NN) is trained very efficiently as time-consuming task of labeling a data set is not required. Numerical examples show that our proposed approach achieves a better performance–complexity trade-off as it is not only several times faster but also provides almost same or even higher throughput as compared to the GA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号