首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2820篇
  免费   389篇
  国内免费   179篇
化学   2177篇
晶体学   25篇
力学   337篇
综合类   55篇
数学   319篇
物理学   475篇
  2024年   4篇
  2023年   60篇
  2022年   119篇
  2021年   152篇
  2020年   230篇
  2019年   158篇
  2018年   128篇
  2017年   135篇
  2016年   187篇
  2015年   152篇
  2014年   173篇
  2013年   211篇
  2012年   145篇
  2011年   154篇
  2010年   124篇
  2009年   125篇
  2008年   130篇
  2007年   153篇
  2006年   135篇
  2005年   123篇
  2004年   120篇
  2003年   81篇
  2002年   54篇
  2001年   42篇
  2000年   39篇
  1999年   25篇
  1998年   37篇
  1997年   27篇
  1996年   32篇
  1995年   26篇
  1994年   10篇
  1993年   10篇
  1992年   11篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   9篇
  1986年   25篇
  1985年   4篇
  1984年   8篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有3388条查询结果,搜索用时 15 毫秒
1.
2.
MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt–SACs for HER. The novel HER activity is attributed to (i) the B– doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)–(B)–(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.  相似文献   
3.
4.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   
5.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   
6.
《Current Applied Physics》2020,20(9):1073-1079
We study emissivity (ε)-dependent radiative heat transfer phenomena in remote and contact configurations. To demonstrate the emissivity-dependent radiative heating mode in a remote configuration, we fabricated miniature greenhouses covered with low (0.34)- and high-ε (0.86) polyethylene films and monitored temperatures on the floors, insides, and covers of the greenhouses during 24 h. The high-ε greenhouse yielded a 9-°C increase in floor temperature relative to the low-ε greenhouse at a one-sun solar irradiance because the high-ε film effectively trapped floor radiation. In contrast, the cover temperature remained lower in the high-ε greenhouse due to intensified radiation released from the high-ε film. This self-cooling effect was more evident when an emissive film was in physical contact with an object. While bare copper heated up to 55 °C, a high-ε film coated copper substrate was kept cooler by 4 and 2 °C compared with the bare and low-ε film coated copper samples, respectively.  相似文献   
7.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   
8.
The success of intracellular protein therapy demands efficient delivery and selective protein activity in diseased cells. Therefore, a cascaded nanozymogen consisting of a hypoxia-activatable pro-protein, a hypoxia-inducing protein, and a hypoxia-strengthened intracellular protein delivery nanovehicle was developed. RPAB, an enzymatically inactive pro-protein of RNase, reversibly caged with hypoxia-cleavable azobenzene, was delivered with glucose oxidase (GOx) using hypoxia-responsive nanocomplexes (NCs) consisting of azobenzene-cross-linked oligoethylenimine (AOEI) and hyaluronic acid (HA). Upon NC-mediated delivery into cancer cells, GOx catalyzed glucose decomposition and aggravated tumoral hypoxia, which drove the recovery of RPAB back to the hydrolytically active RNase and expedited the degradation of AOEI to release more protein cargoes. Thus, the catalytic reaction of the nanozymogen was self-accelerated and self-cycled, ultimately leading to a cooperative anti-cancer effect between GOx-mediated starvation therapy and RNase-mediated pro-apoptotic therapy.  相似文献   
9.
Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.  相似文献   
10.
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号