首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1160篇
  免费   61篇
  国内免费   254篇
化学   1333篇
晶体学   7篇
力学   2篇
综合类   55篇
数学   1篇
物理学   77篇
  2023年   25篇
  2022年   19篇
  2021年   66篇
  2020年   49篇
  2019年   43篇
  2018年   42篇
  2017年   56篇
  2016年   33篇
  2015年   64篇
  2014年   50篇
  2013年   116篇
  2012年   64篇
  2011年   54篇
  2010年   60篇
  2009年   73篇
  2008年   84篇
  2007年   71篇
  2006年   82篇
  2005年   90篇
  2004年   76篇
  2003年   78篇
  2002年   34篇
  2001年   33篇
  2000年   28篇
  1999年   27篇
  1998年   16篇
  1997年   14篇
  1996年   8篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
排序方式: 共有1475条查询结果,搜索用时 15 毫秒
1.
2.
Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400  相似文献   
3.
4.
Compositions based on chitosan/β-glycerophosphate hydrogels with highly porous polylactide granules can be used to obtain moldable bone graft materials that have osteoinductive and osteoconductive properties. To eliminate the influence of such characteristics as chain length, degree of purification, and molecular weight on a designed material, the one-stock chitosan sample was reacetylated to degrees of deacetylation (DD%) of 19.5, 39, 49, 55, and 56. A study of the chitosan/β-glycerophosphate hydrogel with chitosan of a reduced DD% showed that a low degree of deacetylation increased the MSCs (multipotent stromal cells) viability rate in vitro and reduced the leukocyte infiltration in subcutaneous implantation to Wistar rats in vivo. The addition of 12 wt% polylactide granules resulted in optimal composite mechanical and moldable properties, and increased the modulus of elasticity of the hydrogel-based material by approximately 100 times. Excessive filling of the material with PLA (polylactide) granules (more than 20%) led to material destruction at a ~10% strain. Osteoinductive and osteoconductive properties of the chitosan hydrogel-based material with reacetylated chitosan (39 DD%) and highly porous polylactide granules impregnated with BMP-2 (bone morphogenetic protein-2) have been demonstrated in models of orthotopic and ectopic bone formation. When implanted into a critical-size calvarial defect in rats, the optimal concentration of BMP-2 was 10 μg/mL: bone tissue areas filled the entire material’s thickness. Implantation of the material with 50 μg/mL BMP-2 was accompanied with excessive growth of bone tissue and material displacement beyond the defect. Significant osteoinductive and osteoconductive properties of the material with 10 μg/mL of BMP-2 were also shown in subcutaneous implantation.  相似文献   
5.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   
6.
Hydroquinone (HQ) loaded polymer solution was electrospun for its topical application. Nanofibers were then investigated in terms of stability, drug release, and antifungal activity. The effect of chitosan (CS) was investigated on the viscosity, stability, drug release, and antifungal activity of the developed formulation. Results indicate a significantly stable HQ-loaded nanofiber formulation. The addition of CS caused hydration of the drug delivery system and enhanced drug release but reduced its stability. HQ-loaded nanofiber mat showed significant antifungal activity, however, there was no inhibition zone in samples containing CS.  相似文献   
7.
In this work, a new nanocatalyst, Fe2W18Fe4@NiO@CTS, was synthesized by the reaction of sandwich‐type polyoxometalate (Fe2W18Fe4), nickel oxide (NiO), and chitosan (CTS) via sol–gel method. The assembled nanocatalyst was systematically characterized by FT‐IR, UV–vis, XRD, SEM, and EDX analysis. The catalytic activity of Fe2W18Fe4@NiO@CTS was tested on oxidative desulfurization (ODS) of real gasoline and model fuels. The experimental results revealed that the levels of sulfur content and mercaptan compounds of gasoline were lowered with 97% efficiency. Also, the Fe2W18Fe4@NiO@CTS nanocatalyst demonstrated an outstanding catalytic performance for the oxidation of dibenzothiophene (DBT) in the model fuel. The major factors that influence the desulfurization efficiency and the kinetic study of the ODS reactions were fully detailed and discussed. The probable ODS pathway was proposed via the electrophilic mechanism on the basis of the electrophilic characteristic of the metal‐oxo‐peroxo intermediates. The prepared nanocatalyst could be reused for 5 successive runs without any appreciable loss in its catalytic activity. As a result, the current study suggested the potential application of the Fe2W18Fe4@NiO@CTS hybrid nanocatalyst as an ideal candidate for removal of sulfur compounds from fuel.  相似文献   
8.
Thin-film composite of chitosan/nickel phthalocyanine (NiPc) was electrochemically deposited on the fingers of interdigitated gold electrodes, applying chronoamperometric polymerization technique. The presence of crystallized NiPc in the chitosan was confirmed by EDX and FTIR analysis. Acetone, ethanol, and methanol gas-sensing properties of the films prepared at optimum conditions were studied at atmospheric temperature, through differential measurements at an optimized frequency of 10 kHz, using a lock-in amplifier. The conductometric sensor presents the highest sensitivity of 60.2 μS.cm−1(v/v) for methanol and 700 ppm as the limit of detection. For validation, the methanol content of a commercial rubbing alcohol was determined.  相似文献   
9.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号