首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95162篇
  免费   10060篇
  国内免费   7528篇
化学   36145篇
晶体学   1878篇
力学   4850篇
综合类   443篇
数学   18275篇
物理学   51159篇
  2023年   432篇
  2022年   582篇
  2021年   884篇
  2020年   1620篇
  2019年   1636篇
  2018年   1550篇
  2017年   1228篇
  2016年   1236篇
  2015年   1176篇
  2014年   2095篇
  2013年   3193篇
  2012年   2153篇
  2011年   2807篇
  2010年   3270篇
  2009年   7921篇
  2008年   9047篇
  2007年   7499篇
  2006年   6881篇
  2005年   4827篇
  2004年   4500篇
  2003年   4708篇
  2002年   5234篇
  2001年   4113篇
  2000年   3870篇
  1999年   3673篇
  1998年   3038篇
  1997年   2197篇
  1996年   1961篇
  1995年   2426篇
  1994年   2303篇
  1993年   1723篇
  1992年   1219篇
  1991年   953篇
  1990年   751篇
  1989年   686篇
  1988年   624篇
  1987年   460篇
  1985年   995篇
  1984年   655篇
  1983年   506篇
  1982年   673篇
  1981年   822篇
  1980年   748篇
  1979年   583篇
  1978年   591篇
  1977年   560篇
  1976年   551篇
  1975年   321篇
  1974年   365篇
  1973年   469篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.  相似文献   
2.
Organic solar cells (OSCs) harvesting indoor light are highly promising for emerging technologies, such as internet of things. Herein, the photovoltaic performance of PTB7-Th:PC71BM solar cells constructed using “optimized (with 1,8-diiodooctane (DIO))” and “non-optimized (without DIO)” processing conditions are compared for indoor and outdoor applications. We find that in comparison to the “optimized” solar cell, the “non-optimized” solar cell is less efficient under simulated solar light illumination (100 mW cm−2, spectral range 350–1100 nm), owing to significant bimolecular charge carrier recombination losses. However, under simulated indoor illumination (3.28 mW cm−2, spectral range 400–700 nm), bimolecular recombination losses are effective suppressed, thus the power conversion efficiency of the solar cell without DIO was increased to 14.7 %, higher than that of the solar cell with DIO (14.2 %). These results suggest that the common strategy used to optimize the OSCs could be undesired for indoor OSCs. We demonstrate that the efforts for realizing the desired “morphology” of the active layer for the outdoor OSCs may be unnecessary for indoor OSCs, allowing us to realize high-efficiency indoor OSCs using a non-halogenated solvent.  相似文献   
3.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   
4.
Dehydrogenation of an organic compound is the first and the most fundamental elementary reaction in many organic reactions. In ethanol oxidation reaction (EOR) to form CO2, there are a total of 46 pathways in C2HxO (x=1–6) species leading to the removal of all six hydrogen atoms in five C−H bonds and one O−H bond. To investigate the degree of dehydrogenation in EOR under operando conditions, we performed density function theory (DFT) calculations to study 28 dehydrogenation steps of C2HxO on Ir(100). An activation energy surface was then constructed and compared with that of the C−C bond cleavages to understand the importance of the degree of dehydrogenation in EOR. The results show that there are likely 28 dehydrogenations in EOR under fuel cell temperatures and the last two hydrogens in C2H2O are less likely cleaved. On the other hand, deep dehydrogenation including 45 dehydrogenations can occur under ethanol steam reforming conditions.  相似文献   
5.
One of the most common problems in wounds is delayed healing and complications such as infection. Therefore, the need for novel materials accelerates the healing of wounds especially abdominal wounds after surgery besides high efficiency and safety is mandatory. The rate of wound healing, anti-inflammatory and biocompatibility of Zn-Al LDH (Zn-Al layer double hydroxide) alone and loaded with Curcumin (Zn-Al LDH/Curcumin) was screened via in-vivo assays through intramuscular implantation in rat abdominal wall with intact peritoneum cavity. The implanted drugs were formed through Curcumin loaded into LDH of Zn-Al with drug release of 56.78 ± 1.51% within 24 h. The synthesized nanocomposite was characterized by (TGA/DTA) thermal analysis, (XRD) X-ray diffraction, (FESEM) Field emission scanning electron microscopy, (HRTEM) high resolution transmission electron microscope, energy dispersive X-ray (EDX) and low-temperature N2 adsorption, pore volume and average pore size distribution. The integrity of blood circulation, inflammatory signs, wound healing rate, capacity of tissue integration, antigenicity and composite biocompatibility, auto fluorescence ability of collagen bundles and the tensile strength of the muscle were assessed histopathologically after 7 and 30 days’ post-implantation. Excellent wound healing ability was achieved with shortest length between the wound gap edges and higher tensile strength of the muscle. Besides emit florescence very well followed by good healing and tensile muscles strength in Curcumin while very low strength with scar formation in Zn-Al LDH/Curcumin in both acute and chronic wound. No signs of inflammation in Curcumin & Zn-Al LDH. No vessels obstruction or bleeding observed in both Zn-Al LDH and Curcumin more than Zn-Al LDH/Curcumin and control which examined through candling. Good healing & infiltrated immune cells in same groups through histopathological examination. This work supports the anti-inflammatory, wound healing and biocompatibility of both LDH and Curcumin with living matter, increasing their biomedical applications in this era with safety and increasing efficacy with prolonged drug release.  相似文献   
6.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
7.
8.
Lizhi Fang 《中国物理 B》2022,31(12):127802-127802
By using an improved Bridgman method, 0.3 mol% Tm$^{3+}/0.6$ mol% Tb$^{3+}/y$ mol% Eu$^{3+}$ ($y = 0$, 0.4, 0.6, 0.8) doped Na$_{5}$Y$_{9}$F$_{32}$ single crystals were prepared. The x-ray diffraction, excitation spectra, emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples. When excited by 362 nm light, the cool white emission was realized by Na$_{5}$Y$_{9}$F$_{32}$ single crystal triply-doped with 0.3 mol% Tm$^{3+}/0.6$ mol% Tb$^{3+}/0.8$ mol% Eu$^{3+}$, in which the Commission Internationale de l'Eclairage (CIE) chromaticity coordinate was (0.2995, 0.3298) and the correlated color temperature (CCT) was 6586 K. The integrated normalized emission intensity of the tri-doped single crystal at 448 K could keep 62% of that at 298 K. The internal quantum yield (QY) was calculated to be $\sim 15.16$% by integrating spheres. These results suggested that the single crystals tri-doped with Tm$^{3+}$, Tb$^{3+}$ and Eu$^{3+}$ ions have a promising potential application for white light-emitting diodes (w-LEDs).  相似文献   
9.
We give a conjecture on the lower bound of the ADM mass M by using the null energy condition. The conjecture includes a Penrose-like inequality $3M\geqslant \kappa { \mathcal A }/(4\pi )+\sqrt{{ \mathcal A }/4\pi }$ and the Penrose inequality $2M\geqslant \sqrt{{ \mathcal A }/4\pi }$ with ${ \mathcal A }$ the event horizon area and κ the surface gravity. Both the conjecture in the static spherically symmetric case and the Penrose inequality for a dynamical spacetime with spherical symmetry are proved by imposing the null energy condition. We then generalize the conjecture to a general dynamical spacetime. Our results raise a new challenge for the famous unsettled question in general relativity: in what general case can the null energy condition replace other energy conditions to ensure the Penrose inequality?  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号