首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2264篇
  免费   200篇
  国内免费   72篇
化学   576篇
晶体学   1篇
力学   100篇
综合类   32篇
数学   114篇
物理学   1713篇
  2024年   6篇
  2023年   87篇
  2022年   152篇
  2021年   220篇
  2020年   179篇
  2019年   32篇
  2018年   68篇
  2017年   151篇
  2016年   168篇
  2015年   92篇
  2014年   216篇
  2013年   92篇
  2012年   134篇
  2011年   92篇
  2010年   93篇
  2009年   82篇
  2008年   105篇
  2007年   76篇
  2006年   63篇
  2005年   64篇
  2004年   62篇
  2003年   55篇
  2002年   37篇
  2001年   34篇
  2000年   32篇
  1999年   23篇
  1998年   15篇
  1997年   27篇
  1996年   17篇
  1995年   11篇
  1994年   9篇
  1993年   6篇
  1992年   8篇
  1991年   9篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2536条查询结果,搜索用时 15 毫秒
1.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
2.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   
3.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
4.
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point-of-care diagnostics. Currently, nucleic acid (NA) purification remains time-consuming and labor-intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one-step, liquid-phase NA purification that is simpler and faster than conventional solid-phase extraction. By further re-concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non-specific amplification caused by non-optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non-optimal PCR designs, which is 10- and 1000-fold fewer than those of the standard bench-top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point-of-care diagnosis.  相似文献   
5.
A single-step method for isolation of specific cells based on multiple surface markers will have unique advantages because of its scalability, efficacy, and mildness. Herein, we developed multi-aptamer-mediated proximity ligation method on live cell membranes that leverages a multi-receptor co-recognition design for enhanced specificity, as well as a robust in situ signal amplification design for improved sensitivity of cell isolation. We demonstrated the promising efficacy of our method on differentiating tumor cell subtypes in both cell mixtures and clinical samples. Owing to its simple and fast operation with excellent cell isolation sensitivity and accuracy, this approach will have broad applications in biological science, biomedical engineering, and personalized medicine.  相似文献   
6.
Hybrid nanoparticles (HNPs) with zinc oxide and polymethyl metha acrylate (inorganic/ polymer) were synthesized through the exploitation of ultrasound approach. The synthesized HNPs were further characterized employing transmission electron microscopy and x-ray diffraction. ZnO-PMMA based HNPs exhibit excellent protection properties to mild steel from corrosion when gets exposed to acidic condition. Electrochemical impendence spectroscopy (EIS) analysis was accomplished to evaluate the corrosion inhibition performance of MS panel coated with 2 wt% or 4 wt% of HNPs and its comparison with bare panel and that of loaded with only standard epoxy coating., Tafel plot and Nyquist plot analysis depicted that the corrosion current density (Icorr) decreases from 16.7 A/m2 for bare material to 0.103 A/m2 for 4% coating of HNPs. Applied potential (Ecorr) values shifted from negative to positive side. These results were further supported by qualitative analysis. The images taken over a period of time indicated the increase in lifetime of MS panel from 2 to 3 days for bare panel to 10 days for HNPs coated panel, showing that ZnO-PMMA HNPs have potential application in metal protection from corrosion by forming a passive layer.  相似文献   
7.
吴轶鹏  韩慧磊  孙影 《化学教育》2020,41(17):105-111
国内外有关化学学科的相异构想研究主要包括对学生相异构想进行诊断及其原因分析,以及开发有效的教学模式或策略对学生相异构想进行概念转变。通过对国内外相关研究现状的分析,为相异构想的后续研究提供思路。  相似文献   
8.
刘小荣 《化学教育》2020,41(23):46-53
弗兰德斯互动分析系统可以量化课堂教学中的语言行为。以初中化学一节常态课为研究课例,基于弗兰德斯互动分析系统,结合教师他评和自评,从教学目标、教学内容、教学过程和教学效果等4方面进行了全面的分析与评价,并根据评价结果,针对教学目标制订、有效提问、科学的课堂语言结构的营造以及实验探究的实施等提出了可行性的有效策略,从而为青年教师通过教学实践来促进个人专业发展提供依据。  相似文献   
9.
The effects of multi-frequency ultrasound assisted freezing on the freezing rate, microstructure, quality properties (drip loss, firmness, total calcium content, l-ascorbic acid content and total phenol content) of potatoes were studied. The results indicated that the freezing effects of multi-frequency ultrasound was better than those of single-frequency ultrasound. Multi-frequency ultrasound could significantly increase the freezing rate and preserve the quality of frozen samples better. With increase in the number of ultrasonic frequencies, the freezing effect was more obvious. In addition, scan electron microscopy (SEM) images showed that the ice crystals formed by the multi-frequency ultrasonic treatment were fine and uniformly distributed, which caused less damage to the frozen potato samples. From the analysis of the quality attributes, the nutritional values of the samples after multi-frequency ultrasonic treatment was higher, but attention should be paid to the negative influence of the hydroxyl radical generated by the multi-frequency ultrasound.  相似文献   
10.
In this work, ultrasound-assisted electrocatalytic hydrogenation (US-ECHSA) of safrole was carried out in water medium, using sacrificial anode of nickel. The ultrasonic irradiation was carried out at frequency of 20 kHz ± 500 Hz with a titanium cylindrical horn (MS 73 microtip; Ti-6AI-4V alloy; 3.0 mm diameter). The optimal conditions were analyzed by statistical experimental design (fractional factorial). The influence of the sonoelectrochemical reactor design was also investigated by using computational fluid dynamics as simulation tool. Among the five parameters studied: catalyst type, use of β-cyclodextrin as inverse phase transfer catalyst, sonoelectrochemical reactor design, ultrasound mode and the temperature of the solution, only the last three were significant. The hydrogenation product, dihydrosafrole, reached 94% yield, depending on the experimental conditions applied. Data of computational fluid dynamics showed that a wing shape tube added to the sonoelectrochemical reactor can work as a cooling apparatus, during the electrochemical process. The reactional solution temperature diminishes 14 °C when compared to the four-way-type reactor. Cooper cathode, absence of β-cyclodextrin, four-way-type reactor, ultrasound continuous mode (14 W) and absence of temperature control were the most effective reaction parameters for the safrole hydrogenation using US-ECHSA method. The proposed approach represents an important contribution for understanding the hydrodynamic behavior of sonoelectrochemical reactors designs and, consequently, for the reducing of the experimental costs inherent to the sonoelectrochemical process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号