首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   47篇
化学   115篇
力学   6篇
数学   1篇
物理学   283篇
  2023年   50篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   2篇
  2016年   8篇
  2015年   3篇
  2014年   96篇
  2013年   22篇
  2012年   30篇
  2011年   10篇
  2010年   14篇
  2009年   14篇
  2008年   25篇
  2007年   22篇
  2006年   7篇
  2005年   17篇
  2004年   9篇
  2003年   9篇
  2002年   9篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
1.
Wachinger C  Klein T  Navab N 《Ultrasonics》2012,52(4):547-554
The derivation of statistically optimal similarity measures for intensity-based registration is possible by modeling the underlying image noise distribution. The parameters of these distributions are, however, commonly set heuristically across all images. In this article, we show that the estimation of the parameters on the present images largely improves the registration, which is a consequence of the more accurate characterization of the image noise. More precisely, instead of having constant parameters over the entire image domain, we estimate them on patches, leading to a local adaptation of the similarity measure. While this basic idea of creating locally adaptive metrics is interesting for various fields of application, we present the derivation for ultrasound imaging. The domain of ultrasound is particularly appealing for this approach, due to the inherent contamination with speckle noise. Furthermore, there exist detailed analyses of suitable noise distributions in the literature. We present experiments for applying a bivariate Nakagami distribution that facilitates modeling of several scattering scenarios prominent in medical ultrasound. Depending on the number of scatterers per resolution cell and the presence of coherent structures, different Nakagami parameters are required to obtain a valid approximation of the intensity statistics and to account for distributional locality. Our registration results on radio-frequency ultrasound data confirm the theoretical necessity for a spatial adaptation of similarity metrics.  相似文献   
2.
Chen CK  Wan YL  Tsui PH  Chiu WT  Jui F 《Ultrasonics》2012,52(5):663-667
The objective of this study is to explore the feasibility of using ultrasound to detect mastoid effusion (ME). In the past, ultrasound has been used to measure middle ear effusion (MEE) by injecting water into the external ear canal to measure echoes from the tympanic membrane, which is uncomfortable for the patient. It has been shown that air cells in the mastoid of patients with MEE are filled with fluid, which implies that ME could be a useful indicator of MEE. This study suggests using ultrasound to detect ME as a potentially noninvasive approach for MEE detection. In vitro experiments were performed on ten cadaver samples of the human ear. A single-element 1 MHz transducer was used to measure the mastoid of each cadaver before and after injecting water into the mastoid. The experimental results showed that the relative amplitudes of ultrasonic signals differed significantly between before (0.24 ± 0.09, mean ± standard deviation) and after (0.15 ± 0.03) the water injection (p < 0.05, t-test), demonstrating that the ultrasonic reflection can be used to detect ME. The location of the human mastoid under the skin behind the ear allows external measurements, and hence ultrasound-based ME detection may be an alternative, noninvasive diagnostic approach to detecting MEE in the future, providing an examination that avoids discomfort.  相似文献   
3.
Comparisons between predictions of a Biot-Allard model allowing for angle-dependent elasticity and angle-and-porosity dependent tortuosity and transmission data obtained at normal incidence on water-saturated replica bones are extended to oblique incidence. The model includes two parameters which are adjusted for best fit at normal incidence. Using the same parameter values, it is found that predictions of the variation of transmitted waveforms with angle through two types of bone replica are in reasonable agreement with data despite the fact that scattering is not included in the theory.  相似文献   
4.
提出了一个木质纤维素生物质预处理的全绿色加工过程.以玉米秸秆和玉米芯为原料,以超临界CO2和超声偶合法对木质纤维素进行预处理.超临界CO2预处理条件为:压力15-25 MPa,温度120170℃,含水量50%,反应时间0.54 h.超声场功率600W,温度80℃,作用时间2-8 h.用纤维素酶水解反应获得的还原糖总量来评价预处理效果.结果表明,单纯超临界CO2和超临界CO2偶合超声预处理都能够提高生物质水解反应还原糖产量.对于玉米芯,超临界CO2预处理(170℃,20 MPa,3 0min)后,还原糖产率为62%(未预处理的为12%).对于玉米秸秆(170℃,20 MPa,2.5 h),还原糖产率为46.4%.对于玉米芯,超临界CO2偶合超声预处理(600 W,80℃下超声处理6 h,然后用170℃,20 MPa超临界CO2预处理30 min)后,还原糖产率为87%.对于玉米秸秆,超临界CO2偶合超声预处理(600 W,80℃下超声处理8 h,然后用170℃,20 MPa超临界CO2预处理1 h)后,还原糖产率为25.5%.与未处理生物质相比,X射线衍射结果表明玉米秸秆和玉米芯在超临界CO2和超声预处理后其结晶度没有明显变化.扫描电镜分析则发现木质纤维素的表面积显著增加.  相似文献   
5.
This paper presents a multivariate regression method for the prediction of maltose concentration in aqueous solutions. For this purpose, time and frequency domain of ultrasonic signals are analyzed. It is shown, that the prediction of concentration at different temperatures is possible by using several multivariate regression models for individual temperature points. Combining these models by a linear approximation of each coefficient over temperature results in a unified solution, which takes temperature effects into account. The benefit of the proposed method is the low processing time required for analyzing online signals as well as the non-invasive sensor setup which can be used in pipelines. Also the ultrasonic signal sections used in the presented investigation were extracted out of buffer reflections which remain primarily unaffected by bubble and particle interferences.  相似文献   
6.
To summarize some of the most important findings in the field of ultrasonic (US) testing of early age hydration and formation of structure of different cement based materials (CBMs), a review of literature with focus on US P-wave transmission and S-wave reflection methods is presented in this paper. The review shows a great ability of both US techniques to observe setting phenomena and to determine different milestones during the early age formation of CBM’s microstructure. Clear physical basis, high accuracy, and non-destructive nature of the method indicate that US methods could become standardized in the near future.  相似文献   
7.
Theoretically, Ultrasound method is an economical and environmentally friendly or “green” technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille’s equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.  相似文献   
8.
For comprehension purpose, numerical computations are more and more used to simulate the propagation phenomena observed during experimental inspections. However, the good agreement between experimental and simulated data necessitates the use of accurate input data and thus a good characterization of the inspected material. Generally the input data are provided by experimental measurements and are consequently tainted with uncertainties. Thus, it becomes necessary to evaluate the impact of these uncertainties on the outputs of the numerical model. The aim of this study is to perform a probabilistic analysis of an ultrasonic inspection of an austenitic weld containing a manufactured defect based on advanced techniques such as polynomial chaos expansions and computation of sensitivity factors (Sobol, DGSM). The simulation of this configuration with the finite element code ATHENA2D was performed 6000 times with variations of the input parameters (the columnar grain orientation and the elastic constants of the material). The 6000 sets of input parameters were obtained from adapted statistical laws. The output parameters (the amplitude and the position of the defect echo) distributions were then analyzed and the 95% confidence intervals were determined.  相似文献   
9.
The suspended particle size distribution in slurries can, in principle, be estimated from measured ultrasonic wave attenuation across a frequency band in the 10s of MHz range. The procedure requires a computational model of wave propagation which incorporates scattering phenomena. These models fail at high particle concentrations due to hydrodynamic effects which they do not incorporate. This work seeks an effective viscosity and density for the medium surrounding the particles, which would enable the scattering model predictions to match experimental data for high solids loading. It is found that the required viscosity model has unphysical characteristics leading to the conclusion that a simple effective medium modification to the ECAH/LB is not possible. The paper confirms the successful results which can be obtained using core–shell scattering models, for smaller particles than had previously been studied, and outlines modifications to these which would permit rapid computation of sufficient stability to support fast particle sizing procedures.  相似文献   
10.
Dion JR  Burns DH 《Talanta》2011,83(5):1364-1370
Analyte quantification in highly scattering media such as tissue, blood, and other biological fluids is challenging using conventional spectroscopic methods. Ultrasound easily penetrates these opaque samples, yet currently provides little chemical information. We have developed a general approach for creating hydrogel biosensors based on antibody-linked cellulose polymers. Target recognition induces changes to the sensor stiffness and size, which is accompanied by characteristic changes to a measured ultrasonic frequency profile. Using this technique, nM sensitivity for acetaminophen is demonstrated in a series of biofluids including whole blood, blood plasma, saliva, and urine. Likewise, this methodology is attractive for point of care diagnostics due to the short measurement time, simple methodology which excludes pretreatment of samples, and has minimal chemical or buffer requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号