首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   1篇
化学   3篇
力学   3篇
物理学   10篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Snow is a sound absorbing porous sintered material composed of solid matrix of ice skeleton with air (+water vapour) saturated pores. Investigation of snow acoustic properties is useful to understand the interaction between snow structure and sound waves, which can be further used to devise non-destructive way for exploring physical (non-acoustic) properties of snow. The present paper discusses the experimental measurements of various acoustical properties of snow such as acoustic absorption coefficient, surface impedance and transmission losses across different snow samples, followed by inverse characterization of different geometrical parameters of snow. The snow samples were extracted from a natural snowpack and transported to a nearby controlled environmental facility at Patsio, located in the Great Himalayan range of India. An impedance tube system (ITS), working in the frequency range 63–6300 Hz, was used for acoustic measurements of these snow samples. The acoustic behaviour of snow was observed strongly dependent upon the incident acoustic frequency; for frequencies smaller than 1 kHz, the average acoustic absorption coefficient was found below than 0.4, however, for the frequencies more than 1 kHz it was found to be 0.85. The average acoustic transmission loss was observed from 1.45 dB cm−1 to 3.77 dB cm−1 for the entire frequency range. The real and imaginary components of normalized surface impedance of snow samples varied from 0.02 to 7.77 and −6.05 to 5.69, respectively. Further, the measured acoustic properties of snow were used for inverse characterization of non-acoustic geometrical parameters such as porosity, flow resistivity, tortuosity, viscous and thermal characteristic lengths using the equivalent fluid model proposed by Johnson, Champoux and Allard (JCA). Acoustically derived porosity and flow resistivity were also compared with experimentally measured values and good agreement was observed between them.  相似文献   
2.
3.
The characterisation of flow through porous media is important for all solid–liquid separation and fluid transport realms. The permeability of porous media can be anisotropic and furthermore, the extent of anisotropy can be increased as a result of an applied compressive force. However, the understanding of how anisotropy develops is incomplete. An overview of research on permeability anisotropy is given and an expression for predicting anisotropy as a function of void ratio is offered. The two underlying assumptions of the proposed model are: flow in different directions occurs within the same network of pores and deformation is primarily due to the compression of the particles in the direction of the applied force rather than due to particle rearrangement. The assumption of network connectivity allows permeability anisotropy to be described as a function of flow path tortuosity only. Results are presented for hydraulic anisotropy measured in lignite that has been upgraded by a compression dewatering method known as mechanical thermal expression. The lignite permeability is shown to be up to eight times greater in the direction perpendicular to compression, suggesting that the rate of dewatering could be significantly increased by choosing the drainage to also be perpendicular to the direction of the applied compressive force. It is illustrated that the proposed anisotropy model can be used to accurately predict the experimentally determined permeability anisotropy ratios for lignite, as well as for other materials including sand, clay and kaolin.  相似文献   
4.
A capillary-based model modified for characterization of monolithic cryogels is presented with key parameters like the pore size distribution, the tortuosity and the skeleton thickness employed for describing the porous structure characteristics of a cryogel matrix. Laminar flow, liquid dispersion and mass transfer in each capillary are considered and the model is solved numerically by the finite difference method. As examples, two poly(hydroxyethyl methacrylate) (pHEMA) based cryogel beds have been prepared by radical cryo-copolymerization of monomers and used to test the model. The axial dispersion behaviors, the pressure drop vs. flow rate performance as well as the non-adsorption breakthrough curves of different proteins, i.e., lysozyme, bovine serum albumin (BSA) and concanavalin A (Con A), at various flow velocities in the cryogel beds are measured experimentally. The lumped parameters in the model are determined by matching the model prediction with the experimental data. The results showed that for a given cryogel column, by using the model based on the physical properties of the cryogel (i.e., diameter, length, porosity, and permeability) together with the protein breakthrough curves one can obtain a reasonable estimate and detailed characterization of the porous structure properties of cryogel matrix, particularly regarding the number of capillaries, the capillary tortuousness, the pore size distribution and the skeleton thickness. The model is also effective with regards to predicting the flow performance and the non-adsorption breakthrough profiles of proteins at different flow velocities. It is thus expected to be applicable for characterizing the properties of cryogels and predicting the chromatographic performance under a given set of operating conditions.  相似文献   
5.
吴伟  蒋方明  曾建邦 《物理化学学报》2013,29(11):2361-2370
采用Monte Carlo方法重构了LiCoO2电池正极的三维微结构,重构单元的特征尺寸为几十纳米量级,从而得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构.通过对重构电极的特征化分析,得到了微结构中特定相的连通性和扭曲率、组分体积分数的空间分布、比表面积、孔径分布等特征信息.采用D3Q15格子Boltzmann模型(LBM)计算了该重构电极的有效热导率、电解液(或固相)的有效传输系数.同时发现,与随机行走方法以及Bruggemann关系式计算获得的扭曲率数值相比,LBM预测值更可靠.  相似文献   
6.
A series of careful non-acoustical parameters measurements using 5 ‘Illtec’ melamine foam and 10 ‘Basotect TG’ melamine foam samples have been made. Flow resistivity, tortuosity, porosity, viscous characteristic length and thermal characteristic length of two types of compressed melamine foam materials with different foam magnifications have been investigated. It has been found that a relationship between the flow resistivity, fibre equivalent diameter and bulk density exists for each of the compressed melamine foam materials.This paper also discusses relationships between the non-acoustical parameters and compression rates in the compressed melamine foam media.  相似文献   
7.
The fractal dimension of 500 mm long electrical discharges is presented by analyzing a set of photographic images. Three popular fractal dimension estimation techniques, box counting, sandbox and correlation function methods were used to estimate the fractal dimension of the discharge channels. To remove the apparent thickness due to varying magnitudes of current in the discharge channels, edge detection algorithms were utilized. The estimated fractal dimensions for box counting, sandbox and correlation function for long laboratory sparks were 1.20 ± 0.06, 1.66 ± 0.05 and 1.52 ± 0.12 respectively. Within statistical uncertainties, the estimated fractal dimensions of positive and negative polarities agreed very well.  相似文献   
8.
An acoustic method for obtaining the tortuosity, and porosity of thick samples of rigid porous materials consisting of large (>1 mm) grains or fibres is proposed. The method uses pulses with central frequencies close to 12 kHz and an approximate bandwidth of between 3 and 20 kHz. In this frequency range, inertial rather than viscous or scattering effects dominate sound propagation in large pores. This allows application of the high frequency limit of the “equivalent fluid” model. Both reflected and transmitted signals are used in the measurements. Tortuosity is deduced from the high frequency limit of the phase speed (obtained from transmission data) and porosity is obtained from the high frequency limit of the reflection coefficient once the tortuosity is known. The method is shown to give good results in the cases where significant scattering does not occur until frequencies much higher than the upper limit of the pulse bandwidth. Apart from its applicability to samples with several centimetres thickness, the method needs only one set of measurements with the sample to deduce both tortuosity and porosity. In principle the method can be used also to estimate characteristic lengths. However, the errors are found to be larger and the results less consistent than for tortuosity.  相似文献   
9.
Flow resistivity, tortuosity, viscous characteristic length and thermal characteristic length of three melamine foam and two glass wool samples have been measured. It has been found that a melamine foam sample with a bulk density 10.3 kg m−3 and a glass wool sample with a bulk density 28.0 kg m−3 have almost the same flow resistivity, however, the bulk density is as much as three times different. The cross-sectional pore shape factors, which are deduced with the non-acoustical parameters in the Johnson-Allard model, of the melamine foam are smaller than those of the glass wool. This paper also discusses a new relationship between the flow resistivity, the fibre equivalent diameter and the bulk density in melamine foam.  相似文献   
10.
Pulsed field gradient nuclear magnetic resonance (PFG NMR) has been performed to study the diffusion of organic solvents into semicrystalline polyethylene particles. Self-diffusion coefficients in different domains of the sample can be extracted through a bi- exponential fit to the echo intensity attenuation, which allows the precise determination of the tortuosity of the polyethylene particles. Further exploration comes from the measurements with branched polyethylene particles and it was found that the diffusion in polymer phase contributed significantly to the slow component of the exponential decay curve. 2007 Jing Dai Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号