首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   38篇
  国内免费   32篇
化学   51篇
晶体学   23篇
物理学   65篇
  2023年   5篇
  2022年   13篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   10篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
Yuanchao Huang 《中国物理 B》2022,31(4):46104-046104
The p-type doping efficiency of 4H silicon carbide (4H-SiC) is rather low due to the large ionization energies of p-type dopants. Such an issue impedes the exploration of the full advantage of 4H-SiC for semiconductor devices. In this study, we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant, i.e., aluminum (Al), through the defect-level repulsion between the energy levels of group-IVB elements and that of Al in 4H-SiC. Among group-IVB elements Ti has the most prominent effectiveness. Ti decreases the ionization energy of Al by nearly 50%, leading to a value as low as ~0.13 eV. As a result, the ionization rate of Al with Ti co-doping is up to ~5 times larger than that without co-doping at room temperature when the doping concentration is up to 1018 cm-3. This work may encourage the experimental co-doping of group-IVB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4H-SiC.  相似文献   
2.
利用低温水热法在p-GaN薄膜上生长了铟(In)和镓(Ga)共掺杂的ZnO纳米棒。X射线衍射(XRD)、X射线光电子能谱(XPS)和X射线能量色谱仪(EDS)结果表明,In和Ga已固溶到ZnO晶格中。扫描电子显微镜(SEM)结果表明, ZnO纳米棒具有良好的c轴取向性,随着In和Ga共掺杂浓度的增加,纳米棒的直径减小,密度增加。XRD结果表明,In和Ga共掺杂引起ZnO晶格常数增大,导致(002)衍射峰向低角度方向偏移。同时,ZnO的光学性质受到In和Ga共掺杂的影响。与纯ZnO相比, 共掺杂ZnO纳米棒的紫外发射峰都出现轻微红移,这是表面共振和带隙重整效应综合作用的结果。I-V特性曲线表明,随着In和Ga共掺杂浓度的增加,n-ZnO纳米棒/p-GaN异质结具有更好的导电性。  相似文献   
3.
4.
采用溶胶-凝胶法成功制备出系列Eu3+掺杂和Li+、Eu3+共掺杂Gd2ZnTiO6红色荧光粉,并研究Li+、Eu3+掺杂对样品的晶体结构、微观形貌及发光性能的影响。结果显示,所制备的Gd2ZnTiO6∶Eu3+,Li+(GZT∶Eu3+,Li+) 荧光粉为双钙钛矿结构,属于单斜晶系(空间群:P21/n),大小为10 μm的无规则形状的颗粒。在395 nm近紫外光的激发下,GZT∶Eu3+的发射光谱展示出典型的Eu3+线状特征光谱,发射峰中心位于615 nm处,归属于Eu3+5D07F2跃迁。Eu3+的最佳掺杂浓度为0.07(摩尔分数),样品显示明显的浓度猝灭效应,其机制为电偶极子-电偶极子(d-d)相互作用。此外,研究还发现,Li+掺杂对样品的晶体结构、微观形貌没有影响,但是一定量的Li+掺杂可以显著增强样品的荧光强度。当Li+浓度为0.05时,荧光粉发射主峰强度增强程度最大,提高至原来的4.3倍,说明通过Li+、Eu3+共掺杂可以获得高亮度的GZT红色荧光粉。GZT∶0.14Eu3+,0.05Li+荧光粉的CIE色坐标为(0.631 1,0.375 3)与标准红光色坐标(0.670,0.330)较为接近,是一种潜在的LED用红色荧光粉。  相似文献   
5.
氟化钡(BaF2)晶体是已知响应最快的闪烁晶体,在高能物理、核物理及核医学等领域有着广泛的应用前景。抑制BaF2晶体的慢发光成分对其工程应用至关重要。本文利用坩埚下降法制备了高Y3+掺杂浓度5%、8%、10%(摩尔分数)的BaF2晶体,并采用Y3+与碱金属离子(Li+、Na+)共掺杂的方法形成电荷补偿阻止间隙F-的产生,制备了双掺杂型BaF2快响应闪烁晶体,进而基于优化的5 ns和2 500 ns时间门宽测试方法,研究了Y3+掺杂浓度以及Y3+与碱金属离子(Li+、Na+)共掺杂浓度对BaF2闪烁晶体快/慢成分比的影响规律。结果表明,生长的高浓度Y3+掺杂BaF2晶体的光学质量优异,在220 nm和300 nm处透过率分别高于90%和92%;随着Y3+掺杂浓度由0提高至10%,BaF2晶体的慢发光成分显著降低,快/慢成分比由0.15提高至1.21;生长的Y3+/Li+及Y3+/Na+共掺杂BaF2晶体的慢发光成分较Y3+掺杂BaF2晶体进一步降低,快/慢成分比最高分别可达1.63和1.61。研制的双掺杂BaF2快响应闪烁晶体有望应用于高能物理、核物理前沿实验等重要领域。  相似文献   
6.
全无机无铅钙钛矿Cs2TiBr6具有光电特性良好、带隙可调和环境友好等优点,是一种潜力巨大的光吸收材料。为改善Cs2TiBr6的相关性能,我们采用基于第一性原理的方法,针对Pd、Cl掺杂的Cs2TiBr6钙钛矿结构进行了研究。结果表明,用Pd取代Ti后产生杂质带,将原来间接带隙的Cs2TiBr6转变为直接带隙材料。用25.0% Pd掺杂后,晶体带隙值降低26%,掺杂后的晶体在320~415 nm近紫外光区吸收能力加强约50%,在645~900 nm的红外光区及近红外光区的光吸收能力加强约134%。在此基础上,将Cl与25.0% Pd共掺杂时,Cl掺杂不仅可以把Pd的形成能在单掺的基础上减小约9%,而且Cl的不同掺杂位置对材料的光电性能也有一定的影响。  相似文献   
7.
陈美娜  张蕾  高慧颖  宣言  任俊峰  林子敬 《物理学报》2018,67(8):88202-088202
Sm~(3+),Sr~(2+)共掺杂CeO_2的离子电导率被证实可高达Sm~(3+)掺杂CeO_2离子电导率的近两倍,然而,共掺杂对CeO_2电导率的作用机理尚不明确.本文利用第一性原理计算的密度泛函理论+U方法,对Sm~(3+)和Sr~(2+)共掺杂的CeO_2进行了系统的研究,对比Sm~(3+)或Sr~(2+)单掺杂的CeO_2体系,计算并分析了共掺杂体系的电子态密度、能带结构、氧空位形成能以及氧空位迁移能等微观属性.计算结果表明,Sm~(3+),Sr~(2+)的共掺杂对CeO_2基电解质性能的提高具有协同效应,二者的共掺杂不仅能协同抑制CeO_2体系的电子电导率,还能在单掺杂CeO_2的基础上进一步降低氧空位形成能,Sm~(3+)的存在还有助于降低Sr~(2+)对氧空位的俘获作用,而Sr~(2+)的加入则能够在Sm~(3+)掺杂CeO_2的基础上进一步降低最低氧空位迁移能,爬坡式弹性能带方法计算表明共掺杂体系的氧空位迁移能最低可达0.314/0.295 eV,低于Sm~(3+)掺杂CeO_2的最低氧空位迁移能.研究揭示了Sm~(3+),Sr~(2+)共掺杂对CeO_2电导率的协同作用机理,对进一步研发其他高性能的共掺杂电解质材料具有重要的指导意义.  相似文献   
8.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2015,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料, 以柠檬酸为螯合剂, 采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料LiMn1.9Mg0.05Ti0.05O4. 采用热重分析(TGA), X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征. 结果表明: 780℃下煅烧12 h 得到了颗粒均匀细小的尖晶石型结构的LiMn1.9Mg0.05Ti0.05O4材料, 该材料具有良好的电化学性能, 在室温下以0.5C倍率充放电, 在4.35-3.30 V电位范围内放电比容量达到126.8 mAh·g-1, 循环50 次后放电比容量仍为118.5mAh·g-1, 容量保持率为93.5%. 在55℃高温下循环30次后的放电比容量为111.9 mAh·g-1, 容量保持率达到91.9%, 远远高于未掺杂的LiMn2O4的容量保存率. 二价镁离子与四价钛离子等摩尔共掺杂LiMn2O4, 改善了尖晶石锰酸锂的电子导电和离子导电性能, 使其倍率性能和高温性能都得到了明显的提高.  相似文献   
9.
姜金龙  黄浩  王琼  王善民  魏智强  杨华  郝俊英 《物理学报》2014,63(2):28104-028104
采用中频磁控溅射Ti80Si20复合靶在单晶硅表面制备了共掺杂的类金刚石薄膜.研究了沉积温度对薄膜生长速率、化学成分、结构、表面性质和力学性能的影响.结果表明:随沉积温度升高,薄膜生长速率降低,薄膜Ti和Si原子浓度增加,C原子浓度降低;在高温下沉积的薄膜具有低sp3C含量、低表面接触角、低内应力和高的硬度与弹性模量.基于亚表层注入生长模型分析了沉积温度对薄膜生长和键合结构的影响,从薄膜生长机制和微观结构解释了表面性质和力学性能的变化.  相似文献   
10.
A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号