首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11170篇
  免费   1888篇
  国内免费   222篇
化学   10589篇
晶体学   50篇
力学   48篇
综合类   2篇
数学   41篇
物理学   2550篇
  2024年   17篇
  2023年   169篇
  2022年   221篇
  2021年   330篇
  2020年   496篇
  2019年   456篇
  2018年   270篇
  2017年   245篇
  2016年   658篇
  2015年   695篇
  2014年   641篇
  2013年   844篇
  2012年   703篇
  2011年   712篇
  2010年   625篇
  2009年   759篇
  2008年   766篇
  2007年   885篇
  2006年   787篇
  2005年   576篇
  2004年   511篇
  2003年   506篇
  2002年   205篇
  2001年   189篇
  2000年   124篇
  1999年   130篇
  1998年   98篇
  1997年   116篇
  1996年   111篇
  1995年   77篇
  1994年   63篇
  1993年   37篇
  1992年   35篇
  1991年   24篇
  1990年   16篇
  1989年   22篇
  1988年   17篇
  1987年   13篇
  1986年   17篇
  1985年   15篇
  1984年   16篇
  1983年   5篇
  1982年   14篇
  1981年   15篇
  1980年   12篇
  1979年   4篇
  1978年   12篇
  1977年   7篇
  1976年   6篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
《Mendeleev Communications》2022,32(4):467-470
Isomeric forms of indoline spiropyrans show unusual behavior compared with similar compounds, according to experimental data. DFT modeling for gas phase was made to consider the simplest case without environmental effects, which revealed the intramolecular reasons for occurrence of ring opening reaction depending on the particular structure of the compound. The questions of charge redistributions, the changes of geometry and chemical bonds in the structures are also discussed.  相似文献   
2.
The coordinatively unsaturated chromium(II)-based Cr3[(Cr4Cl)3(BTT)8]2 (Cr−BTT; BTT3−=1,3,5-benzenetristetrazolate) metal–organic framework (MOF) has been shown to exhibit exceptional selectivity towards adsorption of O2 over N2/H2. Using periodic density functional theory (DFT) calculations, we attempted to decipher the origin of this puzzling selectivity. By computing and analyzing the magnetic exchange coupling, binding energies, the partial density of states (pDOS), and adsorption isotherms for the pristine and gas-bound MOFs [(Cr4(X)4Cl)3(BTT)8]3− (X=O2, N2, and H2), we unequivocally established the role of spin states and spin coupling in controlling the gas selectivity. The computed geometries and gas adsorption isotherms are consistent with the earlier experiments. The binding of O2 to the MOF follows an electron-transfer mechanism resulting in a CrIII superoxo species (O2.−) with a very strong antiferromagnetic coupling between the two centers, whereas N2/H2 are found to weakly interact with the metal center and hence only slightly perturb the associated coupling constants. Although the gas-bound and unbound MOFs have an S=0 ground state (GS), the nature of spin the configurations and the associated magnetic exchanges are dramatically different. The binding energy and the number of oxygen molecules that can favorably bind to the Cr center were found to vary with respect to the spin state, with a significant energy margin (47.6 kJ mol−1). This study offers a hitherto unknown strategy of using spin state/spin couplings to control gas adsorption selectivity in MOFs.  相似文献   
3.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
4.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
5.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
6.
7.
The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol−1 and its conversion is also thermodynamically unfavorable.  相似文献   
8.
Superhalogens, owing to their large electron affinity (EA, exceeding those of any halogen atom), play an essential role in physical chemistry as well as new material design. They have applications in hydrogen storage and lithium-ion batteries. Owing to the unique geometries and electronic features of magnesium-based clusters, their potential to form a new class of lithium salts has been investigated here theoretically. The idea is assessed by conducting ab initio computations on Li+/MgnF2n+1-2mOm compounds (n=2, 3; m=0-3) and analyzing their performance as potential Li-ion battery electrolytes. The Mg3F7 cluster, with large electron binding energy (EA of 7.93 eV), has been proven to serve as a building block for lithium salts. It is shown that, apart from high electronic stability, the new superhalogen-based electrolytes exhibit a set of desirable properties, including a large band gap, high electrolyte stability window, easy mobility of the Li+, and favorable insensitivity to water.  相似文献   
9.
The influence of steric repulsion between the NMe2 group and a second ortho-(peri-)substituent in the series of 1-dimethylaminonaphthalene and N,N-dimethylanilene ortho-oximes on the ease of the NMe2 group’s intramolecular nucleophilic substitution is studied. Possible reaction intermediates for three mechanisms are calculated (ωB97xd/def-2-TZVP), and their free Gibbs energies are compared to model reaction profiles. Supporting experiments have proved the absence of studied reactivity in the case of simple 2-dimethylaminobenzaldoxime, which allowed us to establish reactivity limits. The significant facilitation of NMe2 group displacement in the presence of bulky substituents is demonstrated. The possibility of fused isoxazoles synthesis via the intramolecular nucleophilic substitution of a protonated NMe2 group in the aniline and naphthalene series is predicted.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号