首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   4篇
  国内免费   25篇
化学   115篇
物理学   38篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1981年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
Bimetallic catalysts have demonstrated properties favorable for upgrading biofuel through catalytic hydrodeoxygenation. However, the design and optimization of such bimetallic catalysts requires the ability to construct accurate, predictive models of these systems. To generate a model that predicts the kinetic behavior of benzene adsorbed on Pt (1 1 1) and a Pt3Sn (1 1 1) surface alloy (Pt3Sn (1 1 1)), the adsorption of benzene was studied for a wide range of benzene coverages on both surfaces using density functional theory (DFT) calculations. The adsorption energy of benzene was found to correlate linearly with benzene coverage on Pt (1 1 1) and Pt3Sn (1 1 1); both surfaces exhibited net repulsive lateral interactions. Through an analysis of the d-band properties of the metal surface, it was determined that the coverage dependence is a consequence of the electronic interactions between benzene and the surface. The linear coverage dependence of the adsorption energy allowed us to quantify the influence of the lateral interactions on the heat of adsorption and temperature programmed desorption (TPD) spectra using a mean-field model. A comparison of our simulated TPD to experiment showed that this mean-field model adequately reproduces the desorption behavior of benzene on Pt (1 1 1) and Pt3Sn (1 1 1). In particular, the TPD correctly exhibits a broadening desorption peak as the initial coverage of benzene increases on Pt (1 1 1) and a low temperature desorption peak on Pt3Sn (1 1 1). However, due to the sensitivity of the TPD peak temperature to the desorption energy, precise alignment of experimental and theoretical TPD spectra demands an accurate calculation of the adsorption energy. Therefore, an analysis of the effect of the exchange-correlation functional on TPD modeling is presented. Through this work, we show the necessity of incorporating lateral interactions into theoretical models in order to correctly predict experimental behavior.  相似文献   
2.
为研究激基复合物器件激子复合区域的变化,在TPD/BPhen界面可形成激基复合物发光的基础上,以Ir(pq)2(acac)为探测层,制备器件ITO/Mo O_3(2.5 nm)/TPD((40-x)nm)/Ir(pq)2(acac)(0.5 nm)/TPD(x,x=0,3,6,10 nm)/BPhen(40 nm)/Cs2CO_3/Al,其中靠近BPhen的TPD称之为间隔层。电致发光光谱表明,该组器件的激子复合区域主要位于Ir(pq)2(acac)薄层和TPD/BPhen界面,分别发射595 nm和478 nm的光。随着TPD间隔层厚度的增加和电压的升高,发光区域向激基复合物区域(TPD/BPhen界面)移动,即更多的电子和空穴在TPD/BPhen界面形成激基复合物发光,Ir(pq)2(acac)发光减弱。当间隔层厚度由0 nm增至10nm时,6 V电压下的Ir(pq)2(acac)和激基复合物发光强度的比值由44降至1.5。对于间隔层厚度为6 nm的器件,Ir(pq)2(acac)和激基复合物发光强度的比值由6 V时的2.8降至10 V时的1.0。由此可见,激基复合物给体作间隔层能有效调节激子复合区域。  相似文献   
3.
Zeolite-Alpha was synthesized under hydrothermal and static conditions and was characterized by N2 BET surface area, XRD, SEM–EDAX analysis, NH3-TPD and FTIR. The dynamic adsorption experiments were carried out on a TPD plus Chemisorption system (Micrometrics ASAP 2920 unit). Adsorption was found to be high initially and it then decreases with an increase in the injected volume. It was found that adsorption increases with an increase in contact time between DMMP and zeolite-Alpha only up to 8 h after which it remains almost constant. Desorption pattern was analyzed which shows two types of peaks, sharp peak with onset temperature of around 30 °C which represents desorption of physisorbed DMMP and a broad peak with the onset temperature of around 110 °C which represents the desorption of strongly chemisorbed DMMP.  相似文献   
4.
5.
In this article, all calculations are performed at B3LYP/6‐31G** level. For each one of the molecule, including triphenylamine (TPA), N,N′‐diphenyl‐N,N′‐bis(3‐methyllphenyl)‐(1,1′‐biphenyl)‐4,4′‐diamine (TPD), biphenyl (Bp), and their derivatives (TPAs, TPDs, Bps, respectively), the geometry is optimized for both neutral and radical‐cation states. Their reorganization energy is then compared. It seems that it is the monomer, TPAs, and not the central biphenyl moiety that determines the properties of TPDs. However, this is contradictory of some previous results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
6.
1. INTRODUCTION In some cities of China, cancer and breath system diseases caused by the pollution of volatile organic compounds (VOCs) have been obviously increasing. The VOCs includes BTEX (benzene, toluene, ethylbenzene, and xylene), aldehydes, cresol, phenol, acetic acid, polynuclear aromatic hydrocarbons (PAHs), which have long-term human health implications. Emission of the VOCs has threatened the health of people seriously [1,2]. The pollution of the VOCs mostly hails from…  相似文献   
7.
通过采用在并五苯薄膜与源漏电极之间插入10 nm并五苯掺杂的N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺薄膜的方法研究了基于并五苯有源层的底栅错面型有机薄膜晶体管的电学特性。研究发现:N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺的引入可以有效改善有源层和源漏电极接触界面的表面形貌,利于形成欧姆接触,从而改善器件性能,最终使优化器件的迁移率由(0.1±0.01)cm2/(V·s)提升至(0.31±0.02)cm2/(V·s),阈值电压由(-34.6±1.3)V降至(-30.1±1.2)V。  相似文献   
8.
采用溶胶-凝胶法制备了TiO2以及La2O3-TiO2载体, 再用沉积沉淀法制备Au/TiO2和Au/La2O3-TiO2催化剂, 并对催化剂的CO氧化反应活性进行测试. 结果表明, La2O3助剂可以显著提高催化剂催化氧化CO的活性. X射线衍射(XRD)、程序升温脱附(TPD)、N2吸附-脱附(BET)表征结果表明, La2O3助剂不仅提高了催化剂比表面积, 抑制了TiO2晶粒尺寸的长大, 并且增强了TiO2的晶格应变, 在O2气氛吸附过程中主要在TiO2表面形成O-物种. 原位傅立叶变换红外(FT-IR)结果进一步表明, La的掺杂不仅提高了吸附在Au活性位CO的氧化速率, 还使TiO2表面形成第二种活性位, 从而显著提高了催化活性.  相似文献   
9.
Ternary hydride of LiBH4–MgH2–NaAlH4 confined into carbo n aerogel scaffold (CAS) via melt infiltration for reversible hydrogen storage is proposed. Nanoconfinement of hydrides into CAS is obtained together with surface occupation of some phases, such as Al and/or LiH. Regarding nanoconfinement, not only multiple-step decomposition of LiBH4–MgH2–NaAlH4 hydride reduces to about single step, but also reduction of dehydrogenation temperature is significantly observed, for example, ∆T up to 70 °C regarding last dehydrogenation step. Moreover, decomposition of NaBH4 in nanoconfined sample can be done at 360 °C (dehydrogenation temperature in this study), which is 115 and 180 °C lower than that of NaBH4 in milled LiBH4–MgH2–NaAlH4 and bulk NaBH4, respectively. The reaction of LiBH4+NaAlH4→LiAlH4+NaBH4 takes place during nanoconfinement and the decomposition of LiAlH4 is observed, resulting deficient hydrogen content liberated. However, hydrogen content released (1st cycle) and reproduced (2nd–4th cycles) from this ternary hydride enhances up to 11% and 22% of full hydrogen storage capacity due to nanoconfinement. After rehydrogenation (T=360 °C and P(H2)=50 bar H2 for 12 h), NaBH4, MgH2, and Li3AlH6 are reversible, whereas Li3AlH6 and NaBH4 in milled sample cannot be recovered due to deficient hydrogen pressure (T=360 °C and P(H2)=80 bar) and probably evaporation of molten sodium during dehydrogenation, respectively. The latter results in inferior hydrogen content reproduced from milled sample to nanoconfined sample.  相似文献   
10.
Recently, organic diamine compounds have been widely used as hole‐transporting materials. In this work, DFT B3LYP method with the 6‐31G* basis set was performed to investigate the influence of molecular conformation on the reorganization energy of a series of tetra(aryl)benzidine‐based hole‐transport materials. The results indicate that there are two types (i.e., ISB and BD/TPD) of geometric differences of the organic diamines with the relaxation processes. The reorganization energy of the ISB type is lower than that of the BD/TPD type. For the ISB type, the terminal phenyl moiety of the molecular framework plays an important role in determining the Marcus‐type reorganization energy and the central biphenyl moiety does not. A methyl group attached to a terminal phenyl can be used to tune the reorganization energy. According to the statistical analysis, four geometric parameters could affect the reorganization energy of the BD/TPD type. The conformation of either the central biphenyl or the terminal phenyl moiety of the BD/TPD type determines the Marcus‐type reorganization energy associated with the charge transport process at the molecular level. Presumably, this calculation can be employed to predict the electroluminescence (EL) character of the other organic diamines and to improve the design of new hole‐transporting materials in organic light‐emitting devices (OLEDs). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号