首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12490篇
  免费   795篇
  国内免费   2460篇
化学   9838篇
晶体学   98篇
力学   402篇
综合类   58篇
数学   200篇
物理学   5149篇
  2024年   25篇
  2023年   203篇
  2022年   268篇
  2021年   346篇
  2020年   391篇
  2019年   362篇
  2018年   323篇
  2017年   396篇
  2016年   484篇
  2015年   431篇
  2014年   543篇
  2013年   826篇
  2012年   606篇
  2011年   917篇
  2010年   777篇
  2009年   966篇
  2008年   808篇
  2007年   1047篇
  2006年   950篇
  2005年   666篇
  2004年   644篇
  2003年   580篇
  2002年   392篇
  2001年   359篇
  2000年   323篇
  1999年   315篇
  1998年   270篇
  1997年   239篇
  1996年   242篇
  1995年   186篇
  1994年   149篇
  1993年   139篇
  1992年   113篇
  1991年   82篇
  1990年   63篇
  1989年   34篇
  1988年   55篇
  1987年   30篇
  1986年   33篇
  1985年   35篇
  1984年   23篇
  1983年   10篇
  1982年   22篇
  1981年   19篇
  1980年   13篇
  1979年   14篇
  1976年   3篇
  1974年   4篇
  1973年   6篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The surface charge is a key concept in electrochemistry. Mathematically, the surface charge is obtained from a spatial integration of the volume charge along a particular direction. Ambiguities thus arise in choosing the starting and ending points of the integration. As for electrocatalytic interfaces, the presence of chemisorbates further complicates the situation. In this minireview, I adopt a definition of the surface charge within a continuum picture of the electric double layer. I will introduce surface charging behaviors of firstly ordinary electrochemical interfaces and then electrocatalytic interfaces featuring partially charged chemisorbates. Particularly, the origin of nonmonotonic surface charging behaviors of electrocatalytic interfaces is explained using a primitive model. Finally, a brief account of previous studies on the nonmonotonic surface charging behavior is presented, as a subline of the spectacular history of electric double layer.  相似文献   
2.
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59–201 mg) and extraction time (6–34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.  相似文献   
3.
By using angle resolved photoemission spectroscopy, we investigate the electronic structures of Pt-skin layer of Pt–Co and Pt–Ni alloys with CO molecules on the surface. Measured Fermi surface maps and band dispersions reflect the signatures of chemical bonding between Pt-skin layer and CO molecules. Furthermore, the degree of chemical bonding strength of CO molecules, estimated from the energy shift of the participating bands, is found to be reduced on both Pt bimetallic alloys. Our results show how the surface band structure of Pt bimetallic alloys is modified with molecular orbitals of CO molecules on the surface, revealing the important role of the electronic structure in the determination of chemical properties of bimetallic alloys.  相似文献   
4.
A polydentate ligand bridged by a fluorene group, namely 9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene (L), has been prepared under solvothermal conditions in acetonitrile. Crystals of the three‐dimensional metal–organic framework (MOF) poly[[[μ3‐9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene‐κ3N:N′:O]bis(methanol‐κO)(μ‐sulfato‐κ2O:O′)nickel(II)] methanol disolvate], {[Ni(SO4)(C27H24N2O2)(CH3OH)]·2CH3OH}n, (I), were obtained by the solvothermal reaction of L and NiSO4 in methanol. The ligand L forms a two‐dimensional network in the crystallographic bc plane via two groups of O—H…N hydrogen bonds and neighbouring two‐dimensional planes are completely parallel and stack to form a three‐dimensional structure. In (I), the NiII ions are linked by sulfate ions through Ni—O bonds to form inorganic chains and these Ni‐containing chains are linked into a three‐dimensional framework via Ni—O and Ni—N bonds involving the polydentate ligand L. With one of the hydroxy groups of L coordinating to the NiII atom, the torsion angle of the hydroxyethyl group changes from that of the uncoordinated molecule. In addition, the adsorption properties of (I) with carbon dioxide were investigated.  相似文献   
5.
Using the method of the parameter expansion up to the third order, explicitly investigates surface tension effect on harmonics at weakly nonlinear stage in Rayleigh-Taylor instability (RTI) for arbitrary Atwood numbers and compares the results with those of classical RTI within the framework of the third-order weakly nonlinear theory. It is found that surface tension strongly reduces the linear growth rate of time, resulting in mild growth of the amplitude of the fundamental mode, and changes amplitudes of the second and third harmonics, as is expressed as a tension factor coupling in amplitudes of the harmonics. On the one hand, surface tension can either decrease or increase the space amplitude; on the other hand, surface tension can also change their phases for some conditions which are explicitly determined.  相似文献   
6.
The kinetics of the dissipation of chlortetracycline in the aquatic environment was studied over a period of 90 days using microcosm experiments and distilled water controls. The distilled water control experiments, carried out under dark conditions as well as exposed to natural sunlight, exhibited biphasic linear rates of dissipation. The microcosm experiments exhibited triphasic linear rates of degradation both in the water phase (2.7 × 10−2, 7 × 10−3, 1.3 × 10−3 μg g−1 day–1) and the sediment phase (3.4 × 10−2, 6 × 10−3, 1 × 10−3 μg g−1 day–1). The initial slow rate of dissipation in the dark control (3 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation and hydrolysis, whereas the subsequent fast rate (1.8 × 10−3 μg g−1 day1) was attributed to a combination of evaporation, hydrolysis, and microbial degradation. For the sunlight-exposed control, the initial slow rate of dissipation (1.5 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation, hydrolysis, and photolysis, whereas the subsequent fast rate was attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation (5.1 × 10−3 μg g−1 day–1). The initial fast rate of dissipation in the water phase of the microcosm experiment is attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation, whereas all subsequent slow rates in the water phase and all rates of degradation in the sediment phase are attributed to microbial degradation of the colloidal and sediment particle adsorbed antibiotic. A multiphase zero-order kinetic model is presented that takes into account (a) dissipation of the antibiotic via evaporation, hydrolysis, photolysis, microbial degradation, and adsorption by colloidal and sediment particles and (b) the dependence of the dissipation rate on the concentration of the antibiotic, type and count of microorganisms, and type and concentration of colloidal particles and sediment particle adsorption sites within a given aquatic environment.  相似文献   
7.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
8.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   
9.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
10.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号