首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   24篇
  国内免费   35篇
化学   154篇
晶体学   7篇
力学   499篇
综合类   5篇
数学   59篇
物理学   230篇
  2024年   1篇
  2023年   11篇
  2022年   4篇
  2021年   6篇
  2020年   14篇
  2019年   16篇
  2018年   10篇
  2017年   27篇
  2016年   41篇
  2015年   25篇
  2014年   53篇
  2013年   49篇
  2012年   20篇
  2011年   62篇
  2010年   37篇
  2009年   68篇
  2008年   83篇
  2007年   54篇
  2006年   56篇
  2005年   43篇
  2004年   40篇
  2003年   39篇
  2002年   41篇
  2001年   14篇
  2000年   10篇
  1999年   20篇
  1998年   22篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有954条查询结果,搜索用时 15 毫秒
1.
电子、激子和声子等量子态在固体中的行为早已被人们所熟知. 然而,当体系的尺寸只有纳米量级的时候,已有的固体理论常常不能适用,需要新的低维物理理论的建立. 我们系统研究了低维体系限域量子态(包括电子、激子和声子)的行为对环境、应力、压力及光的响应和性质的调控. 较早认识到低维体系之显著的表面-体积比对量子态性质调控之有效性,系统地揭示了低维体系的一系列由表面和应力决定的新颖性质,证明了低维体系的表面和应力效应同量子限域效应同等重要. 本文概况了如下五个方面的结果:(1)一种使用应力效应调控电子能带结构的方法和(2)一种使用表面效应调控电子能带结构的方法(这两个方法都可将低维体系能带从间接能隙调控至直接能隙能带结构);(3)一种低维体系表面掺杂方法,该方法将在低维体系掺杂中取代传统方法;(4)量子点表面诱导的光致异构现象;(5)基于表面自催化半导体低维结构的形成机理. 希望我们的研究工作有助于促进低维体系在光电子、纳电子、环境、能源、生物和医学等领域的应用.  相似文献   
2.
We consider optimal intervention methods under budget constraints when financial systems face economic shocks. We propose two policies formulated by mixed-integer linear programs where regulators inject cash into institutions. One is to minimize systemic losses, and the other is to minimize the number of defaulting institutions. Using publicly available data on the Korean financial system, we construct its entire network and apply stress scenarios to the system to compare the performances of intervention strategies and derive insights on their workings.  相似文献   
3.
Developing a highly stable and dendrite-free zinc anode is essential to the commercial application of zinc metal batteries. However, the understanding of zinc dendrites formation mechanism is still insufficient. Herein, for the first time, we discover that the interfacial heterogeneous deposition induced by lattice defects and epitaxial growth limited by residual stress are intrinsic and critical causes for zinc dendrite formation. Therefore, an annealing reconstruction strategy was proposed to eliminate lattice defects and stresses in zinc crystals, which achieve dense epitaxial electrodeposition of zinc anode. The as-prepared annealed zinc anodes exhibit dendrite-free morphology and enhanced electrochemical cycling stability. This work first proves that lattice defects and residual stresses are also very important factors for epitaxial electrodeposition of zinc in addition to crystal orientation, which can provide a new mechanism for future researches on zinc anode modification.  相似文献   
4.
A method to measure the stress field at the fiber tip in the fiber pull out test was proposed by using a digital gradient sensing technique. First, the principle of digital gradient sensing is introduced, and the non-contact optical system of digital gradient sensing developed. Then, a fiber reinforced composite model specimen, where a nail was inserted in epoxy resin to act as a fiber, was performed, and a pull out test was conducted on the specimen using the digital gradient sensing technique. Finally, the angular deflections contour at the fiber tip was obtained, and the stress intensity factor was extracted from the angular deflections. The results show that the stress intensity factor at the fiber tip extracted from the angular deflections agreed with the results calculated by the finite element method.  相似文献   
5.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   
6.
The effect of velocity on rigid wheel performance   总被引:1,自引:0,他引:1  
A simulation model to predict the effect of velocity on rigid-wheel performance for off-road terrain was examined. The soil–wheel simulation model is based on determining the forces acting on a wheel in steady state conditions. The stress distribution at the interface was analyzed from the instantaneous equilibrium between wheel and soil elements. The soil was presented by its reaction to penetration and shear. The simulation model describes the effect of wheel velocity on the soil–wheel interaction performances such as: wheel sinkage, wheel slip, net tractive ratio, gross traction ratio, tractive efficiency and motion resistance ratio. Simulation results from several soil-wheel configurations corroborate that the effect of velocity should be considered. It was found that wheel performance such as net tractive ratio and tractive efficiency, increases with increasing velocity. Both, relative wheel sinkage and relative free rolling wheel force ratio, decrease as velocity increases. The suggested model improves the performance prediction of off-road operating vehicles and can be used for applications such as controlling and improving off-road vehicle performance.  相似文献   
7.
Composites made from two linear isotropic elastic materials are subjected to a uniform hydrostatic stress. It is assumed that only the volume fraction of each elastic material is known. Lower bounds on all rth moments of the hydrostatic stress field inside each phase are obtained for r?2. A lower bound on the maximum value of the hydrostatic stress field is also obtained. These bounds are given by explicit formulas depending on the volume fractions of the constituent materials and their elastic moduli. All of these bounds are shown to be the best possible as they are attained by the hydrostatic stress field inside the Hashin-Shtrikman coated sphere assemblage. The bounds provide a new opportunity for the assessment of load transfer between macroscopic and microscopic scales for statistically defined microstructures.  相似文献   
8.
The maximum energy release rate criterion, i.e., G max criterion, is commonly used for crack propagation analysis. This fracture criterion is based on the elastic macroscopic strength of materials. In the present investigation, however, the G max criterion has been modified in order to accommodate the consideration of plastic strain energy. This modified criterion is extended to study the fatigue crack growth characteristics of mixed-mode cracks. To predict crack propagation due to fatigue loads, a new elasto–plastic energy model is presented. This new model includes the effects of material properties such as strain hardening exponent n, yield strength σ y , and fracture toughness and stress intensity factor ranges. The results obtained are compared with those obtained using the commonly employed crack growth law and the experimental data.  相似文献   
9.
The effect of filling high density polyethylene (HDPE) with calcium carbonate (up to 50% by weight) on the stress relaxation and the creep in uniaxial extension at room temperature was investigated. The addition of CaCO3 was found to have a strong influence on the flow behaviour of HDPE. In particular, it was observed that the internal stress level, calculated from relaxation data, increased markedly with the filler content. The reduction in creep rate of the filled samples suggested that the CaCO3-particles induce a change in the structure of the HDPE-interphase close to the filler surface. This was supported by dynamic mechanical measurements performed at low temperatures on swollen HDPE-CaCO3 samples.  相似文献   
10.
A semi-analytical solution is obtained for a rotating stress-free edge disk of constant thickness and density. In the plastic range, the Hill’s quadratic orthotropic yield criterion is adopted. In the elastic range, the Hooke’s law holds with thermal effects included. The analysis of singularities performed may be used for correct implementation of numerical codes and preliminary engineering design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号