首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8543篇
  免费   1858篇
  国内免费   923篇
化学   6867篇
晶体学   29篇
力学   817篇
综合类   46篇
数学   333篇
物理学   3232篇
  2023年   100篇
  2022年   165篇
  2021年   197篇
  2020年   336篇
  2019年   384篇
  2018年   364篇
  2017年   295篇
  2016年   341篇
  2015年   457篇
  2014年   655篇
  2013年   822篇
  2012年   639篇
  2011年   701篇
  2010年   555篇
  2009年   631篇
  2008年   607篇
  2007年   543篇
  2006年   532篇
  2005年   484篇
  2004年   442篇
  2003年   417篇
  2002年   253篇
  2001年   174篇
  2000年   166篇
  1999年   130篇
  1998年   121篇
  1997年   124篇
  1996年   93篇
  1995年   120篇
  1994年   86篇
  1993年   68篇
  1992年   54篇
  1991年   18篇
  1990年   42篇
  1989年   28篇
  1988年   22篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   19篇
  1983年   5篇
  1982年   15篇
  1981年   7篇
  1980年   6篇
  1979年   12篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
  1971年   4篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
刘超  田飞  邓瑾琦  孙佳姝 《化学学报》2022,80(5):679-689
复杂生命体系中关键分子及微纳生物粒子的高灵敏、高特异检测, 对理解多层次多尺度生物学过程、阐明疾病发生发展机制和探索新型生物标志物等具有重要意义. 微流控生物传感器整合了微流控技术和生物传感技术的诸多优势, 在微量生物样本精准测量方面取得了显著进展. 近年来, 微流控热泳生物传感技术(Thermomicrofluidic biosensing)利用物质在局域温度梯度场中的热泳定向迁移现象, 并结合均相生物传感及信号放大新策略, 实现了复杂样本中生物分子及微纳生物粒子的快速、高灵敏、原位检测. 重点阐述了以热泳为核心的微流控传感技术, 包括微量热泳、热泳-对流耦合、热泳-扩散泳耦合以及热泳-电泳耦合等方法, 总结了不同传感方法的原理、特点及其在生物分子(蛋白、核酸等)与微纳生物粒子(细胞外囊泡、病毒、细胞等)检测中的应用, 并探讨了微流控热泳技术在生物医学检测领域中面临的挑战与未来发展方向.  相似文献   
2.
High-valent tetraalkylcuprates(iii ) and -argentates(iii ) are key intermediates of copper- and silver-mediated C−C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3] complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe] anion upon collisional activation of the cuprate(iii ) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2], consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2] from the argentate(iii ) species. Remarkably, the different C−C coupling propensities of the two [RMiii Me3] complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3]. Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.  相似文献   
3.
The new nanocomposites, Pd/C/ZrO2, PdO/ZrO2, and Pd/PdO/ZrO2, were prepared by thermal conversion of Pd@UiO-66-Zr−NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr−NH2. The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h−1, while by using Pd@UiO-66-Zr−NH2, much lower TOF values, 51–95 h−1, were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.  相似文献   
4.
Hot-hole injection from plasmonic metal nanoparticles to the valence band of p-type semiconductors and reduction by hot electrons should be improved for efficient and tuneable reduction to obtain beneficial chemical compounds. We employed the concept of modal strong coupling between plasmons and a Fabry-Pérot (FP) nanocavity to enhance the hot-hole injection efficiency. We fabricated a photocathode composed of gold nanoparticles (Au−NPs), p-type nickel oxide (NiO), and a platinum film (Pt film) (ANP). The ANP structure absorbs visible light over a broad wavelength range from 500 nm to 850 nm via hybrid modes based on the modal strong coupling between the plasmons of Au−NPs and the FP nanocavity of NiO on a Pt film. All wavelength regions of the hybrid modes of the modal strong coupling system promoted hot-hole injection from the Au−NPs to NiO and proton/water reduction by hot electrons. The incident photon-to-current efficiency based on H2 evolution through water/proton reduction by hot electrons reached 0.2 % at 650 nm and 0.04 % at 800 nm.  相似文献   
5.
Bulky Pd−N-heterocyclic carbene (NHC) catalysts (e. g., N-(di-2,6-(3-pentyl)phenyl), IPent) have been shown to have significantly higher reactivity in a wide variety of cross-coupling applications (i. e., C−C, C−S, C−N) than less hindered variants (e. g., N-(di-2,6-(isopropyl)phenyl), IPr). Further, chlorinating the backbone of the NHC ring sees an even greater increase in reactivity. In the cross-coupling of (hetero)aryl electrophiles to secondary alkyl nucleophiles, making the N-aryl groups larger reduces the amount of β-hydride elimination leading to alkene byproducts and chlorinating the NHC core had an even greater effect, all but eliminating alkene formation. In the present study involving the cross-coupling of primary alkyl electrophiles and nucleophiles, a sharp and surprising reversal of all of the above trends was observed. Bulkier catalysts had generally slower rate of reaction and β-hydride elimination worsened leading to extensive amounts of alkene byproducts.  相似文献   
6.
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.  相似文献   
7.
Solvent-free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalenetetracarboxylic acid (Br2-NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real-world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.  相似文献   
8.
Synthesis of fluorescent P-hydroxybinaphtylphosphole-oxide or -sulfide was achieved by trapping a binaphtyl dianion with methyl dichlorophosphite or P-(N,N-diethylamino)dichlorophosphine, followed by oxidation or sulfuration of the P-center. After saponification or acid hydrolysis, the P-hydroxyphospholes were coupled to peptides using the coupling agent BOP, under the conditions required for the synthesis in solution or on a solid support. This new method was illustrated by the labeling of the JMV2959, a potent antagonist of the Growth Hormone Secretagogue Receptor type 1a (GHS−R1a). The labeled conjugates were used to characterize GHSR ligands by competition assays, based on Fluorescence Resonance Energy Transfer (FRET). Such P-hydroxyphosphole-oxide or -sulfide constitute a promising new class of compact fluorophores with large Stokes shift, for labeling biomolecules by grafting through the phosphorus atom.  相似文献   
9.
[{Mn(TPA)I}{UO2(Mesaldien)}{Mn(TPA)I}]I formula (here TPA=tris(2-pyridylmethyl)amine and Mesaldien=N,N’-(2-aminomethyl)diethylenebis(salicylidene imine)) reported by Mazzanti and coworkers (Chatelain et al. Angew. Chem. Int. Ed. 2014 , 53, 13434) is so far the best Single Molecule Magnet (SMM) in the {3d–5f} class of molecules exhibiting barrier height of magnetization reversal as high as 81.0 K. In this work, we have employed a combination of ab initio CAS and DFT methods to fully characterize this compound and to extract the relevant spin Hamiltonian parameters. We show that the signs of the magnetic coupling and of the g-factors of the monomers are interconnected. The central magnetic unit [UVO2]+ is described by a Kramers Doublet (KD) with negative g-factors, due to a large orbital contribution. The magnetic coupling for the {Mn(II)-U(V)} pair is modeled by an anisotropic exchange Hamiltonian: all components are ferromagnetic in terms of spin moments, the parallel component JZ twice larger as the perpendicular one J. The spin density distribution suggests that spin polarization on the U(V) center favors the ferromagnetic coupling. Further, the JZ/J ratio, which is related to the barrier height, was found to correlate to the corresponding spin contribution of the g-factors of the U(V) center. This correlation established for the first time offers a direct way to estimate this important ratio from the corresponding gS-values, which can be obtained using traditional ab initio packages and hence has a wider application to other {3d–5f} magnets. It is finally shown that the magnetization barrier height is tuned by the splitting of the [UVO2]+ 5 f orbitals.  相似文献   
10.
A facile and environmentally friendly electrochemical protocol is herein reported for the C(sp2)−C(sp3) cross dehydrogenative coupling between imidazopyridines and N,N-dimethylanilines. The broad functional group compatibility includes halogens, ester, alcohol, sulfone as well as thiophene. This methodology is also suitable for benzo[d]imidazo[2,1-b]thiazole, thiazoimidazole and tetrahydroisoquinoline, and can be scaled up to 5 mmol. Mechanistic insights are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号