首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   134篇
  国内免费   6篇
化学   50篇
晶体学   1篇
力学   36篇
数学   10篇
物理学   480篇
  2024年   2篇
  2023年   8篇
  2022年   8篇
  2021年   6篇
  2020年   10篇
  2019年   12篇
  2018年   6篇
  2017年   27篇
  2016年   47篇
  2015年   13篇
  2014年   44篇
  2013年   8篇
  2012年   22篇
  2011年   28篇
  2010年   37篇
  2009年   41篇
  2008年   41篇
  2007年   25篇
  2006年   27篇
  2005年   19篇
  2004年   18篇
  2003年   20篇
  2002年   12篇
  2001年   4篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   13篇
  1996年   19篇
  1995年   14篇
  1994年   8篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
1.
Today, analyzing of sound pressure level and frequency is considered as an important index in human society. Sound experts believe that analyzing of these parameters can help us to better understanding of work environments. Sound measurements and frequency analysis did to fix the harmful frequency in all sections in Shiraz gas power plant with sound analyzer model BSWA 308. The sound pressure levels (LP) and the one and one-third octave band were continuously measured in A and C weighting networks and slow mode for time response. Excel 2013 and Minitab 18.1 software used for statistical calculations. Results analyzed by Minitab 18.1 software. The highest harmful frequency in Shiraz Gas Power Plant (SGPP) was 50 Hz with 115 dB. The sound pressure level (SPL) ranged from 45 dB to 120 dB in one-third octave band and weighting network C. The maximum sound pressure level was in Craft electricity generator with 105.3 dB and 67 Hz. Sound pressure level in surrounded environment was 120 dB. According to the results, in this industry the sound pressure level exceeded the Occupational Exposure Level of Iran (OEL). The value of sound pressure level were higher than the Standard of occupational health. SGPP consumes 47000 cubic meters of natural gas per hour to produce 100 MW (Mega Watt) of electricity. It is very high and it is not economical and cost effective. These numbers indicate that the power plant’s efficiency is low. It could be concluded that the noise pollution is an important issue in these industries. Moreover, SGPP produce noise with loss energy. Frequencies rotation at high sound pressure levels toward low frequencies were happened.  相似文献   
2.
3.
Sound velocities in molten ((LiF + AgI)) and ((LiBr + AgI)) mixtures have been measured to investigate the relationship between the sound velocity and the temperature and the role of the anion in the (liquid + liquid) phase transition. Our results show that the ((LiBr + AgI)) system is biphasic between the melting point and T = 984 K and becomes monophasic above this temperature. We show that the upper consolute critical temperature for the AgI-containing melts increases with decreasing anion size in the series F > Cl > Br. The ((LiF + AgI)) melt remains biphasic at all temperatures investigated up to T = 1218 K. The temperature coefficients for the sound velocities in the upper and lower phases of the ((LiBr + AgI)) system have opposite signs because of the superposition of the temperature and composition factors. The difference between the magnitudes of the velocities for the coexisting phases decreases exponentially with increasing temperature and is described by a critical exponent of 0.85 for the ((LiBr + AgI)) melt near the critical temperature. This value is 15% less than that found for alkali halide melts, in which long-range Coulomb forces between ions prevail. This difference may result from the fact that silver halides are intermediate between the typical ionic salts and the fully covalently bonded ones.  相似文献   
4.
This paper is focused on the capabilities of gas–liquid foams to attenuate acoustic waves. It is postulated that the sound attenuation phenomenon in foams is largely governed by the hydrodynamic resistance of the Plateau-Gibbs channels (PGC) to the flow of liquid through them. It is shown that the addition of solid particles to gas–liquid foams has opposite effects depending on the concentration of the added solid particles. As long as the concentration of the added solid particles is smaller than a certain critical value the sound attenuation coefficient increases and as a result in the sound velocity decreases. However, if the concentration of the added solid particles becomes larger than this critical value the attenuation coefficient decreases and the sound velocity increases. When the concentration of the solid particles reaches some critical value, the particles block the Plateau-Gibbs channels and stop the filtration. As a result the attenuation coefficient of the sound wave decreases while the sound velocity, in such three-phase foams, increases. The point at which the sound wave stops attenuating and its velocity starts to increase is known as the point of self-clarification. Based on this postulate and on the results of our preliminary tests the present study provides a plausible explanation to the above-mentioned contradicting effect, and the self- clarification phenomenon.  相似文献   
5.
Although the study of the sound pressure radiation from membranes and plates is not new, current and future applications have produced a large body of recent research in the field. Several works have been published on the radiation from general plane surfaces and some particular geometries such as rectangular, circular, elliptic and annular. However, the case of sound radiation from non-planar axisymmetric rings that could be applied to the design of coaxial loudspeakers has not received much attention. In this article, a simplified numerical approach for determining the sound pressure radiated from symmetric non-planar pistons and rings is presented. The method can also include those cases having a radially-symmetric velocity distribution.  相似文献   
6.
7.
This paper presents an evaluation method for measuring the sound pressure level and mode shapes of tire cavity resonance by using a multi-microphone system. Two commercial tires were evaluated to compare abilities of noise suppression by means of this method in the range of the first resonance from 200 to 260 Hz. One tire was a special tire that suppresses tire cavity resonance with polyurethane foam mounted on the tire’s inner liner. The other tire was a normal tire with no polyurethane foam. The mode shape change from vertical to horizontal direction in both tires. However, the sound pressure level of the special tire was lower than the normal tire at all frequencies.  相似文献   
8.
The interaction between the flow field and the sound field is responsible for the sound absorption at perforated acoustic liners with bias flow and has to be investigated contactlessly. Based on the optically measured flow velocity spectrum, an energy analysis was performed. As a result, the generation of broadband flow velocity fluctuations in the shear layer surrounding the bias flow caused by the flow sound interaction has been observed. In addition, the magnitude of this acoustically induced flow velocity oscillation exhibits a correlation with the acoustic dissipation coefficient of the bias flow liner. This supports the assumption that an energy transfer between the flow field and the sound field is responsible for the acoustic damping.  相似文献   
9.
We study the propagation of anisotropic sound and shock waves in dipolar Bose-Einstein condensate in three dimensions (3D) as well as in quasi-two (2D, disk shape) and quasi-one (1D, cigar shape) dimensions using the mean-field approach. In 3D, the propagation of sound and shock waves are distinct in directions parallel and perpendicular to dipole axis with the appearance of instability above a critical value corresponding to attraction. Similar instability appears in 1D and not in 2D. The numerical anisotropic Mach angle agrees with theoretical prediction. The numerical sound velocity in all cases agrees with that calculated from Bogoliubov theory. A movie of the anisotropic wave propagation in a dipolar condensate is made available as supplementary material.  相似文献   
10.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号