首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   136篇
  国内免费   9篇
化学   62篇
晶体学   1篇
力学   32篇
数学   10篇
物理学   506篇
  2024年   2篇
  2023年   10篇
  2022年   8篇
  2021年   7篇
  2020年   11篇
  2019年   13篇
  2018年   7篇
  2017年   30篇
  2016年   48篇
  2015年   14篇
  2014年   45篇
  2013年   12篇
  2012年   22篇
  2011年   36篇
  2010年   40篇
  2009年   43篇
  2008年   43篇
  2007年   26篇
  2006年   29篇
  2005年   19篇
  2004年   18篇
  2003年   21篇
  2002年   12篇
  2001年   4篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   12篇
  1996年   19篇
  1995年   13篇
  1994年   8篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有611条查询结果,搜索用时 15 毫秒
1.
2.
Today, analyzing of sound pressure level and frequency is considered as an important index in human society. Sound experts believe that analyzing of these parameters can help us to better understanding of work environments. Sound measurements and frequency analysis did to fix the harmful frequency in all sections in Shiraz gas power plant with sound analyzer model BSWA 308. The sound pressure levels (LP) and the one and one-third octave band were continuously measured in A and C weighting networks and slow mode for time response. Excel 2013 and Minitab 18.1 software used for statistical calculations. Results analyzed by Minitab 18.1 software. The highest harmful frequency in Shiraz Gas Power Plant (SGPP) was 50 Hz with 115 dB. The sound pressure level (SPL) ranged from 45 dB to 120 dB in one-third octave band and weighting network C. The maximum sound pressure level was in Craft electricity generator with 105.3 dB and 67 Hz. Sound pressure level in surrounded environment was 120 dB. According to the results, in this industry the sound pressure level exceeded the Occupational Exposure Level of Iran (OEL). The value of sound pressure level were higher than the Standard of occupational health. SGPP consumes 47000 cubic meters of natural gas per hour to produce 100 MW (Mega Watt) of electricity. It is very high and it is not economical and cost effective. These numbers indicate that the power plant’s efficiency is low. It could be concluded that the noise pollution is an important issue in these industries. Moreover, SGPP produce noise with loss energy. Frequencies rotation at high sound pressure levels toward low frequencies were happened.  相似文献   
3.
A new series of transparent aerogels of biopolymer-polysiloxane double networks is reported. Biopolymer aerogels have attracted much attention from green and sustainable aspects but suffered from strong hydrophilicity and difficulty to make homogeneous structures in nanoscale; these drawbacks are overcome by compositing with a polysiloxane network. Alginate-polymethylsilsesquioxane aerogel has high optical transparency, water repellency, comparable superinsulation property and improved bending flexibility compared to pure polymethylsilsesquioxane aerogel. The nanoscale homogeneity is realized by separating the crosslinking steps for two networks in a sequential protocol: condensation of siloxane bonds and metal-crosslinking of biopolymer. The crosslinking order, biopolymer-first or siloxane-first, and universality/limitation of biopolymer-crosslinker pairs are discussed to construct fundamental chemistry of double network systems for their further application potentials.  相似文献   
4.
Sound velocities in molten ((LiF + AgI)) and ((LiBr + AgI)) mixtures have been measured to investigate the relationship between the sound velocity and the temperature and the role of the anion in the (liquid + liquid) phase transition. Our results show that the ((LiBr + AgI)) system is biphasic between the melting point and T = 984 K and becomes monophasic above this temperature. We show that the upper consolute critical temperature for the AgI-containing melts increases with decreasing anion size in the series F > Cl > Br. The ((LiF + AgI)) melt remains biphasic at all temperatures investigated up to T = 1218 K. The temperature coefficients for the sound velocities in the upper and lower phases of the ((LiBr + AgI)) system have opposite signs because of the superposition of the temperature and composition factors. The difference between the magnitudes of the velocities for the coexisting phases decreases exponentially with increasing temperature and is described by a critical exponent of 0.85 for the ((LiBr + AgI)) melt near the critical temperature. This value is 15% less than that found for alkali halide melts, in which long-range Coulomb forces between ions prevail. This difference may result from the fact that silver halides are intermediate between the typical ionic salts and the fully covalently bonded ones.  相似文献   
5.
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.  相似文献   
6.
This paper is focused on the capabilities of gas–liquid foams to attenuate acoustic waves. It is postulated that the sound attenuation phenomenon in foams is largely governed by the hydrodynamic resistance of the Plateau-Gibbs channels (PGC) to the flow of liquid through them. It is shown that the addition of solid particles to gas–liquid foams has opposite effects depending on the concentration of the added solid particles. As long as the concentration of the added solid particles is smaller than a certain critical value the sound attenuation coefficient increases and as a result in the sound velocity decreases. However, if the concentration of the added solid particles becomes larger than this critical value the attenuation coefficient decreases and the sound velocity increases. When the concentration of the solid particles reaches some critical value, the particles block the Plateau-Gibbs channels and stop the filtration. As a result the attenuation coefficient of the sound wave decreases while the sound velocity, in such three-phase foams, increases. The point at which the sound wave stops attenuating and its velocity starts to increase is known as the point of self-clarification. Based on this postulate and on the results of our preliminary tests the present study provides a plausible explanation to the above-mentioned contradicting effect, and the self- clarification phenomenon.  相似文献   
7.
An analytical model is developed to investigate the sound transmission loss from orthogonally rib-stiffened double laminated composite plates structure under a plane sound wave excitation, in which first order shear deformation theory is presented for laminated composite plates. By using the space harmonic approach and virtual work principle, the sound transmission loss is described analytically. The validity and feasibility of the model are verified by comparing the present theoretical predictions with numerical results published previously. The influences of structure geometrical parameters on sound transmission loss are subsequently presented. Through numerical results, it can be concluded that the proposed analytical model is accurate and simple in solving the vibroacoustic behavior of an orthogonally rib-stiffened double laminated composite plates.  相似文献   
8.
The interaction between the flow field and the sound field is responsible for the sound absorption at perforated acoustic liners with bias flow and has to be investigated contactlessly. Based on the optically measured flow velocity spectrum, an energy analysis was performed. As a result, the generation of broadband flow velocity fluctuations in the shear layer surrounding the bias flow caused by the flow sound interaction has been observed. In addition, the magnitude of this acoustically induced flow velocity oscillation exhibits a correlation with the acoustic dissipation coefficient of the bias flow liner. This supports the assumption that an energy transfer between the flow field and the sound field is responsible for the acoustic damping.  相似文献   
9.
This paper presents an evaluation method for measuring the sound pressure level and mode shapes of tire cavity resonance by using a multi-microphone system. Two commercial tires were evaluated to compare abilities of noise suppression by means of this method in the range of the first resonance from 200 to 260 Hz. One tire was a special tire that suppresses tire cavity resonance with polyurethane foam mounted on the tire’s inner liner. The other tire was a normal tire with no polyurethane foam. The mode shape change from vertical to horizontal direction in both tires. However, the sound pressure level of the special tire was lower than the normal tire at all frequencies.  相似文献   
10.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号